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Abstract

In an important paper, Hinton and Nowlan

(1987) demonstrate the Baldwin e�ect in a

simple Genetic Algorithm. The ability of the

phenotype to adapt, coupled with the evolu-

tionary process, allows behavioural goals to

become over time genetically speci�ed; this

seems Lamarckian but is not. In that paper,

as a subsidiary point, the slowness of �xa-

tion of the last few goals is commented on,

and a later paper by Belew (1989) attempts

an analysis. In this paper I show that ge-

netic drift is the explanation for this slowness

phenomenon. Using a di�usion equation ap-

proach, I give an analysis of genetic drift for

genetic algorithms, where it is too often ig-

nored. Critical relationships between muta-

tion rate, population size, and forces of selec-

tion are given which decide whether genetic

drift will be of signi�cance or not.

1 Introduction

In an important and elegant paper, Hinton and

Nowlan (1987) demonstrate with a deliberately sim-

ple example the Baldwin e�ect, wherein the ability of

a phenotype to adapt in its lifetime (ability to `learn')

alters the �tness landscape of the corresponding geno-

type. This has the consequence that selection within

a population moves the genotypes towards the region

where the adaptations, that were originally made in

the lifetime of the phenotypes, are genetically �xed.

This has the appearance of Lamarckism, but is not so,

as there has been no direct 
ow of information from

the adapted phenotype to the genotype.

The model chosen as an example uses genotypes with

a number of genes that can be speci�ed as incorrect,

correct, or open to adaptation during the lifetime of

the phenotype. The evaluation function only favours

�
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those phenotypes that, within a �nite lifetime, �nd

a perfect solution through a combination of `correct'

genes, and `adaptive' genes which successfully adapt.

It is demonstrated that with the application of a stan-

dard genetic algorithm (GA) to the population as spec-

i�ed, the number of incorrect alleles on the genotype

rapidly decreases to zero; the number of correct al-

leles increases at �rst rapidly and then slows down;

the number of undecided (adaptive) alleles decreases

slowly. If the same experiment is tried out only with

correct and incorrect genes, and no adaptive ones, then

the `needle in a haystack' nature of the single perfect

solution means that only random search works, and

takes an unreasonably long time.

The main thrust of Hinton and Nowlan's paper is en-

dorsed here, but a subsidiary matter that is mentioned

as an aside there is taken up as the main point for in-

vestigation here in this paper:

One interesting feature of [the �gure] is that

there is very little selective pressure in favor

of genetically specifying the last few potential

connections, because a few learning trials is

almost always su�cient to learn the correct

settings of just a few switches.

The �gure in question indicates that there could be an

asymptote at a relative frequency of about 0.45 below

which the number of undecided alleles will not fall.

My own re-implementation of the model usually shows

an asymptote at between 0.05 and 0.2. A typical run

is shown in �gure 1, showing the dramatic changes in

the �rst 50 generations, and the longer term behaviour

over 500 generations. The variations between runs is

indicated in table 1, showing the values at the end of 20

runs of 500 generations each. The re-implementation

by Belew (1989) shows `an almost steady-state' at

about 0.3. He asserts that the curve is `in fact asymp-

totically approaching : : :0.0'. This I will demonstrate

to be false, in the general case; the analysis of what is

really happening shows that the combinationof genetic

drift and the hitch-hiking e�ect so completely swamps

the selective pressures that some of the genes are com-



Figure 1: The proportions of incorrect, correct, and undecided (adaptive) alleles (0s, 1s, ?s) in the whole

population, against generations. On the left, the �rst 50 generations of a run, and on the right the same

continued for 500 generations.

pletely converged to the undecided value, rather than

the `correct' one.



Table 1: The �nal proportions of undecided alleles after 20 runs each of 500 generations, with no. of loci

converging or converged on ?. 4 runsy have in fact completely converged at all 20 loci, only one runz does not

yet have a locus with ? �xed.

Propn of ?s Loci having Loci having Propn of ?s Loci having Loci having

at 500 gens. >50% ?s 100% ?s at 500 gens. >50% ?s 100% ?s

0.063 1 1 0.108 2 2

0.109 2 2 0.093 2 1

0.082 1 1 0.150 3 3y

0.123 2 2 0.150 3 3y

0.118 2 2 0.112 2 2

0.074 1 1 0.100 2 2y

0.107 2 2 0.093 2 1

0.200 4 4y 0.121 2 1

0.134 3 2 0.115 2 2

0.092 2 0z 0.115 1 1

bility of that member contributing to the reproductive

pool for the next generation. In the early stages, vir-

tually all the members will have the same minimum

�tness. Something similar will happen also at the later







Figure 3: Equilibrium distributions, varying m for particular values of s. The horizontal scale is the proportion

x of the allele being selected for, in the range x = 0.001 to 0.999. the vertical scale varies from graph to graph,

as the constant c in eqn. 11 has here been set to 1; whereas it should normalise the graph so that the area

underneath is unity. Hence for the U-shaped curves, only the general shape is indicative.
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Using the population size N, we now convert �x to a

new time scale where N generations equals one unit of

time.

M (x) = N (�x

mut

+�x

sel

)

= mN (1� 2x) +

sNx(1� x)

1 + sx

(8)

On calculating V (x) we use the fact that the variance

of �x over one generation is x(1 � x)=N . Converting

to the same time scale as above we have

V (x) = N

x(1� x)

N

= x(1� x) (9)

Substituting (8) and (9) into (4) we have the following

(the constants on integration can be assimilated into

the normalizing constant c):

�̂(x) =

c

x(1� x)

exp (W (x))



Figure 4: Equilibrium distributions, varying s for particular values of m. See caption to �gure 3

of the relative proportions of the converged population

that settle at x = 0 or x = 1, the numerator should

be considered for these values; although not much re-

liance should be placed on this, as it is exactly here

that the di�usion approximation breaks down with a

�nite size population.

Nevertheless, for s = 0 the numerator is constant, and

as s increases the numerator is more at x = 1 than it

is at x = 0. (1 + s)

2N

becomes O(e) when 2sN = 1,

and increases exponentially as s increases above this

value. Hence when 2



A Appendix:

The Hinton & Nowlan model

A.1 Expected �tness of potential winner

To calculate the expected �tness of


