
To appear in Concurrent Engineering: Research and Applications (Special Issue on Conflict Management), 1994.

- 1 -

Co-ordinating Distributed ViewPoints:
the anatomy of a consistency check

STEVE EASTERBROOK

School of Cognitive & Computing Sciences, University of Sussex, Falmer, Brighton, BN1 9QH
easterbrook@cogs.susx.ac.uk

ANTHONY FINKELSTEIN, JEFF KRAMER & BASHAR NUSEIBEH

Department of Computing, Imperial College, 180 Queen’s Gate, London, SW7 2BZ
{acwf, jk, ban}@doc.ic.ac.uk

Support for Concurrent Engineering must address the “multiple perspectives problem” -
many actors, many representation schemes, diverse domain knowledge and differing
development strategies, all in the context of distributed asynchronous development. Central
to this problem is the issue of managing consistency between the various elements of an
emerging design. In this paper, we argue that striving to maintain complete consistency at
all points in the development process is unnecessary, and an approach based on tolerance
and management of inconsistency can be adopted instead. We present a scenario which
highlights a number of important issues raised by this approach, and we describe how these
issues are addressed in our framework of distributed ViewPoints. The approach allows an
engineering team to develop independent ViewPoints, and to establish relationships
between them incrementally. The framework provides mechanisms for expressing
consistency relationships, checking that individual relationships hold, and resolving
inconsistencies if necessary.

1 . Introduction

Concurrent engineering involves the collaboration and co-ordination of a physically distributed
team with variable opportunities for communication with one another. Traditional approaches to the
problems of distributed working use a central database, or repository, to which all team members
have communication access. Consistency is managed in this database through strict access control
and version management, along with a common data model or schema. Such centralised
approaches do not adequately support the reality of distributed engineering, where communication
with a central database cannot always be guaranteed, and access control rapidly becomes a
bottleneck (Cutkosky, et al., 1993).

The alternative, a fully decentralised environment, is seen to be problematic because of the
difficulties of maintaining consistency between a large collection of agents. However, these
problems can be overcome by recognising that maintaining global consistency at all times is an
unnecessary burden. Indeed, it is often desirable to tolerate and even encourage inconsistency, to
maximise design freedom, and to prevent premature commitment to design decisions. The focus
therefore shifts from maintaining consistency to the management of inconsistencies.

- 2 -

multiple perspectives. The paper presents a scenario to illustrate some of the issues raised by this
approach. We then consider each issue in turn and describe how our approach addresses it.

2 . ViewPoints

The framework upon which we base this work supports distributed software engineering in which
multiple perspectives are maintained separately as distributable objects, called ViewPoints
(Finkelstein, et al., 1992). A ViewPoint can be thought of as a combination of the idea of an
‘actor’, ‘knowledge source’, ‘role’ or ‘agent’ in the development process, and the idea of a ‘view’
or ‘perspective’ which an actor maintains. In software terms, ViewPoints are loosely coupled,
locally managed, coarse-grained objects which encapsulate partial knowledge about the system and
domain, specified in a particular, suitable representation scheme, and partial knowledge of the
process of development.

Each ViewPoint has the following slots:

• a representation style, the scheme and notation by which the ViewPoint expresses what it
can see;

• a domain, which defines the area of concern addressed by the ViewPoint;

• a specification, the statements expressed in the ViewPoint’s style describing the domain;

•

- 3 -

- 6 -

5 . How are relationships between ViewPoints expressed?

In the scenario, the two ViewPoints have a relationship between them that needs to be clearly
defined. This particular relationship arises from applying the software development method: the
method provides dataflow diagrams as a notation, and decomposition of processes within a
dataflow diagram as a development step. Similarly, a method which provides several notations will
also specify how those notations should be used in combination, and how they inter-relate. Hence
the possible relationships between ViewPoints are determined by the method.

The method designer defines the relationships that should hold between pairs of ViewPoints.
Because inconsistency between ViewPoints is tolerated, the relationships are those that should
hold, rather than those that actually do. Each relationship is expressed as a rule for determining
whether that relationship holds. The rules can be applied as consistency checks when necessary.

Development of an individual ViewPoint may proceed unrestrained by relationships with other
ViewPoints. When the relationships become important, the consistency rules provide the means for
checking whether the relationships hold. The consistency checks are part of the ViewPoint, and
hence are invoked by that ViewPoint. Just as there is no central database, there is no third party to
check consistency between ViewPoints.

5 . 1 . Types of Consistency Rule

Conceptually, there are three levels of consistency which might need to be checked: local to a
ViewPoint, between two ViewPoints, and global. The ViewPoints framework supports the first
two, as in-ViewPoint and inter-ViewPoint checks respectively. At the in-ViewPoint level, each rule
defines a property that should hold of a specified ViewPoint. At the inter-ViewPoint level, each
rule defines a relationship that should hold between two specified ViewPoints.

Handling global consistency is problematic in a fully distributed environment, in which there is no
central database. In the ViewPoints framework, global consistency checking is eliminated by
transforming global checks into in- and inter- ViewPoint checks. For example, if a particular
method requires that some consistency condition holds for all ViewPoints, the method designer
might define a ViewPoint to contain a representation of all the other ViewPoints. The global check
then becomes an in-ViewPoint check for this new ViewPoint. However, such ViewPoints are not a
privileged part of the framework, merely another type of ViewPoint that a method designer might
choose to define.

It is also useful to distinguish between rules that check for existence (or absence) of information,
and those that check for agreement of information. Existence and agreement rules are expressed
slightly differently.

Existence Agreement

Level 1:
In-ViewPoint Rules

E.g. check for unconnected
items, etc.

E.g. check for name clashes,
etc.

Level 2:
Inter-ViewPoint Rules

E.g. check for existence of a
related ViewPoint.

E.g. check for consistency with
information in a related
ViewPoint.

It is not necessary to assume at the inter-ViewPoint level that all the rules at the in-ViewPoint level
hold. There may be circumstances under which a user may wish to perform an inter-ViewPoint
check, without resolving local inconsistencies. An example is the consistency relationship between
a parent and a child (decomposition) ViewPoint: we may wish to check and resolve the relationship
with the parent as soon as the child is created, in order to transfer contextual information. The in-
ViewPoint rules for the child (and possibly the parent) have not been applied, but the inter-
ViewPoint check is still sensible.

5 . 2 . Notation for Expressing Consistency Rules

Nuseibeh et. al. (1993; 1994) introduce a notation for inter-ViewPoint consistency rules based on

- 7 -

the expression of a relationship between a source ViewPoint (VPS) and a destination ViewPoint
(VPD). The source ViewPoint is the one that invokes the rule. Relationships take the form:

∀ VPS, ∃ VPD such that {ps1 ℜ VP(t, d): ps2}

where VP(t, d) specifies the destination ViewPoint, with template t and domain d, and where ps1

and ps2 are partial specifications. The rule then states that ps1 in the source ViewPoint is related to
ps2 in the destination ViewPoint by the relationship ℜ. Example relationships are equality (=) and
entailment (→). The partial specifications will refer to relations, objects, typed attributes and values
within the relevant notation. A ‘dot’ notation is used to refer to attributes of objects, so that for
instance ‘Arrow.Label.fred’ refers to a value ‘fred’ of the attribute ‘Label’ of an object ‘ArrowArro2d.j
02 The Tj
0.0636Tc
-414.071 T12 Td
0.565 Tw
(’artial specifications wgivn sn the s rule s maybetarebitrarily cople x,invoklvingvalrious logcatlTj
-0.095 Tc
/(connct ivns.'
0.06 Tc
/17TL
0.315 Tw
(he pualntfiess tapply relationship bovr toe soetof aiewPoint , tyowgivn rconsistencyrule. RGivn '
0.065 Tc
/2 TL
0.3576Tw
(thet fhe rule. are edefind atspartiof the aiewPoint bemplate ,the yexpressirelationships aetween '
00.090 Tc
/ Tw
(eiewPoint ,that fhavn ota yetoben acreted . Henc ,the source ViewPoint is runivnrsally ualntfiesd,'
0.06 Tc
1.490 Tw
(’yowindcati that ihe rule.tapples tor) evnryViewPoint iderivnd fromthat ihmplate . Oce ‘artiacular'
0.0679Tc
1.488 0w
(eiewPoint ,tre enstancialtnd fromthaebemplate ,thes rfirstpualntfiess cn oetadroped a–the source '
00.0916Tc
/ Tw
(eiewPoint is ralwaysthe aiewPoint beat iconailn the rule. RForthe relain derof theisparper wiewill '
00.097 Tc
/(ressen fhe rule. arsthe yewouldtappearsn tanenstancialtnd iewPoint, wi.. Rithiou fhe rfirstpualntfiess.'
00.098 Tc
/9 TcL
(Hre)w enstroducn rfewexptensons wtofhe rotation. AFirstly,the sindcation of ahaebepedof aestination)T'0.11 2Tc
/2 TL
01 2Tnetion 10 Tf
46.998 0 T 0i8pi {ps)tial specificatr rule1 0 Td3’ refers Tf
46.998 0 T 0i5d Tc
/9 TcsindcatO7 Tsindc.06 , 2Tneti98 0 .99 0 T 0ewPoif aestination)nryViogcatlpeadeterminTj
-rstspecift by the relationship) evnryViewPoint
(’yowiindcati hat ihedeterminTj
-26) ed itota'
0s8 1ogcaf aest) Tc
/R
-0.0checkTj
-rcatr rule1 0 Td3s Tfs8 1ewPoif aestifi 2Tnet518 0 .9508 tapply relationship
/R
-0)T'0.1he aiie relial 2Tne56922 0 Td
(Label)22.95
/R26 8 Tf
13.64868 0 Td
(A2)Tj
04Tj
01Tc
/R10 12 Tfnet5688 0 Td
0.343 T6.2
011the de.954j
0.137 eweneed ,thor ogcaf aest,tspe)Tj
-0ons will1 T12 Td
0.5650 Tc(thetial specifs tapp sn the s rule
/R
-0)c
/R48 10 Tf
235.5394897 -18 Td
(")Tj
j
0.4
/R10 12 Tf
7.95.546 -10 Td
0 Tw8 a v89Point)Tj
28
0.137 eweneed ,thor ewPoif aest. Weions, ob-arrangewouldtappeaf
-292 Td
9on 10-717.n)Tjent (

" VPS

- 8 -

ViewPoint requires the existence of another related ViewPoint. An example is the rule “Every Z
schema must have a textual description”. This type of rule can be expressed using null partial
specifications, denoted by ∅. By convention, the partial specification for the destination ViewPoint
can be omitted entirely. Every ViewPoint containing a Z schema would contain a rule of the form:

R1: ∅ → ∃ VPD (TD, Ds)

Where TD is the template for ‘textual description’ and Ds means that the domain of the textual
description ViewPoint should be the same as that of the source ViewPoint.

The second kind of existence relationship covers situations in which elements of the specification in
one ViewPoint require other related ViewPoints to exist. An example is “Every non-primitive
process in a DFD must have a decomposition DFD associated with it”. In this case only the partial
specification of the destination ViewPoint will be null:

R2: {Process.Status.Nonprimitive} → ∃ VPD (DFD, Process.Name)

Where DFD is the template for ‘dataflow diagram’ and Process.Name indicates that the domain of
the decomposition ViewPoint should be the name of the process it represents.

Each of the types of rule described above can also be negated, for instance to specify that an
element of a ViewPoint specification should not have another ViewPoint associated with it, or that
a particular ViewPoint should be unique. Examples are “A primitive process in a DFD should not
be decomposed”:

R3: {Process.Status.Primitive} → ¬ ∃ VPD (DFD, Process.Name)

and, in an agent hierarchy ViewPoint, “There should be only one agent hierarchy diagram”:

R4: ∅→ ¬ ∃ VPD :(AH, Da)

where Da indicates that the domain of the destination ViewPoint can be anything. It is important to
note that consistency rules are always applied from a source ViewPoint, and the source ViewPoint
will never be checked for consistency with itself (i.e. VPD will never be instantiated as VPS). Self-
consistency is checked at the in-ViewPoint level, using a separate set of rules. Without this
arrangement, rules like R4 would always fail.

5.3.2. Agreement Relationships

In general, agreement rules express relationships between the contents of two ViewPoints. An
obvious example is the relationship between the flows connected to a process in a DFD and the
contextual flows in the decomposition of that process. An example consistency rule for the parent
ViewPoint is “Every output from a process in a DFD must appear as a contextual output in every
decomposition of that process”:

R5: ∀ VPD(DFD, From.Name) { link(From, _).Flow.Name =

VPD: link(_, context).Flow.Name }

Where the underscore is used to denote ‘any’; “link(A, B)” is an object in the DFD notation linking
process A to process B; and the dot notation is used to extract attributes and values from the ‘link’
object.

Note that the destination ViewPoint is now universally quantified, in contrast to the existence rules
defined above. Hence an agreement rule does not require the related ViewPoint to exist: a separate
existence relationship expresses this. It also allows for the possibility that several alternative
ViewPoints exist, for example where two conflicting ViewPoints have been proposed.

As well as expressing equality, the relationship might express exclusion, such as the rule “Process
names must be unique across all DFDs”:

R6: ∀ VPD (DFD, Da) {Process.Name ≠ VPD: Process.Name}

Note that this rule does not exclude duplicate process names within a single DFD, as the destination
ViewPoint will never be instantiated to be the same as the source ViewPoint.

5.3.3. Handling ‘Global’ Consistency Rules

Consistency checks can not exist outside of some ViewPoint: if they could it would violate the
requirement for distributability. However, conceptually there are some checks which we wish to

- 9 -

perform without knowing whether any of the ViewPoints being checked actually exist. An example
of such a rule is “there must be an agent hierarchy”. To handle such rules, the method designer
could create a template for a ViewPoint which has as its specification a graph representing other
ViewPoints and the relationships between them. Such a ViewPoint is also useful as a browser for
the current set of ViewPoints.

There might be any number of such ViewPoints to contain different management information. For
instance, there may be one for each template, to keep track of relationships between all ViewPoints
instantiated from that template. Alternatively, there may be just one for the entire collection. The
choice is up to the method designer.

Because of the distributed nature of the ViewPoints framework, there is no guarantee that the
specification in such a ViewPoint accurately represents the current set of ViewPoints: a graph
representing other ViewPoints may get out of date. Inter-ViewPoint rules can be defined to check
whether the graph is up-to-date. In-ViewPoint rules in this type of ViewPoint act as global checks
over the set of ViewPoints represented.

For example, consider a ViewPoint that keeps track of all ViewPoints containing dataflow
diagrams. A simple inter-ViewPoint rule in this ViewPoint might be “Every node in the graph
represents a dataflow ViewPoint”:

R7: {Node} → ∃ VPD(DFD, Node.Name)

This viewpoint might also need the rule “Every dataflow ViewPoint is represented as a node in the
graph”:

R8: ∀ VPD(DFD, Da) {Node.Name = VPD: Da}

Where Da

- 10 -

In general, the post-conditions of applying rule Ri will be a list of n instantiations of relationship ℜi,
contained in the rule, expressed as a set of predicates of the form ℜi(σ, δ), where σ and δ are the
specification items that matched psS and psD. If no partial specifications in the souu2na

- 11 -

process in the parent DFD”:

R10 : ∀ VPD(DFD, Dd) { link(_, To.Name.‘context’).Flow.Name = VPD: link(Ds, _).Flow.Name }

This second rule should only be applied where the destination ViewPoint is the parent, as
established in R9. Hence, the process model will specify that R10 should only be applied to
destination ViewPoints for which R9 has been successfully applied:

ℜ9(∅, ψ) ⇒ [VPS, R10] {ℜ10(σ1, ψ:δ1),..., ℜ10(σn, ψ:δn)} ∪
{inconsistent(σ1, ψ:δ1, R10),..., inconsistent(σm, ψ:δm, R10)}

Note that the precondition, ℜ9, defines the destination ViewPoint, ψ, to which rule R10 applies.
The post-condition is a set of partial specifications for which ℜ10 holds and a set of partial
specifications that are inconsistent. Both sets could be empty, if nothing in the ViewPoints’
specifications matched the patterns in the rule.

A more complex example is provided by the rule “Dataflow names must be unique across all DFDs
unless related across a decomposition”. As we have seen above, there are several ways that
dataflow names can be related across a decomposition, including those specified in R5, R9 and R10 ,
and some others to deal with input flows, which we will ignore for now. Hence, we first express
just the uniqueness rule:

R11 : ∀ VPD(DFD, Dd) {link(_, _).Flow.Name ≠ VPD: link(_, _).Flow.Name}

We then link it in the process model to the rules that specify the exceptions. When applying R11, we
are not interested in the set of partial specifications for which the rule holds, as this is just an
exhaustive list of pairs of different dataflow names. However, we are interested in any partial
specifications for which the relationship does not hold. Hence, the entry in the process model will
be:

[VPS, R11] {breaks(σ1, δ1, R11),..., breaks(σm

- 12 -

A knows is that there was an inconsistency at the time when the rule was applied.

Because of the asynchronous development of ViewPoints, we often need to ensure that several
inter-ViewPoint actions are carried out as a single transaction. For example, in the previous
section, rule R10 could only be invoked if it is known that relationship ℜ9 holds. If the source
ViewPoint invokes R9 at some instance, it establishes that ℜ9 held at that instance. Later, if R10

needs to be checked, it must invoke R9 again to establish that ℜ9 still holds, and then invoke R10 .
These two invocations must be carried out as a single transaction.

7 . 2 . Communication Protocol

Application of the inter-ViewPoint consistency rules is achieved through a node-to-node interaction
protocol. The protocol provides the set of rules by which all ViewPoint synchronisation and
communication take place.

Application of a rule involves comparing partial specifications from each of the ViewPoints,
possibly after some transformations have been applied. Identifying the relevant partial specification
must be done locally by each ViewPoint, as the style and structure of a ViewPoint’s specification
may not be visible to other ViewPoints.

We will not describe the protocol in detail here. Essentially the sequence of actions is as follows.
The source ViewPoint requests potential destination ViewPoints to identify themselves, and then
transmits the rule, the partial specifications psS, and the pattern psD. The destination ViewPoint
then applies the rule and transmits the results of applying the rule.

The protocol assumes the existence of a reliable communications network, and a distributed name
service which helps locate and identify ViewPoints.

7 . 3 . Example

To illustrate the application of consistency checking rules, we will demonstrate how inconsistency
(4) from the scenario is handled. Firstly, note that the two ViewPoints of interest, A and B, each
contain: a description, perhaps represented internally as shown below; a set of consistency checks;
and a local process model to guide application of those checks.

ViewPoint A ViewPoint B

- 13 -

We have listed two of the consistency rules for each ViewPoint, and the corresponding entries in
the process models. In each case, the process model requires the relationship specified by the first
rule to hold as a precondition for the second rule. For ViewPoint A, this specifies that the
decomposition ViewPoint for a process must exist before the correspondences between output
flows can be checked. For ViewPoint B, the parent ViewPoint must exist before such
correspondences can be checked. Note also that rules R5 and R10 encode the same check, but from
the perspective of each ViewPoint.

Consider first the application by ViewPoint A of rule R5. The process model requires that this rule
only be applied if the relationship specified by R2 holds, i.e. if the decomposition ViewPoint exists.
This precondition also identifies the decomposition ViewPoint, in preparation for application of R5.
Whenever R5 is invoked, R2 is automatically checked first, and both checks are performed as a
single transaction. This ensures that the decomposition ViewPoint still exists, whether or not R2

had been checked previously.

In this example, R2 identifies the destination ViewPoint as ViewPoint B. R5 then identifies the
following relationships and inconsistencies:

ℜ5(d2, VPD(DFD, B):d2)

∧ inconsistent(d4, VPD(DFD, B):link(_, context), R5)

∧ inconsistent(d5, VPD(DFD, B):link(_, context), R5)

These record that the relationship holds for the dataflow d2, but that for d4 and d5, the rule failed.
Note that the first argument to the inconsistent predicate is the actual item that matched psS, whilst
the second argument names the destination ViewPoint, and gives the partial specification (psD) for
which no match was found.

8 . How are inconsistencies resolved?

The resolution process is concerned with establishing a relationship between two ViewPoints.
Resolution only becomes necessary if a consistency check failed, and the ViewPoint owner wishes
to correct this. In many cases, resolution will not be necessary after the failure of a rule, because
the inconsistency can be tolerated.

The goal of inconsistency resolution is to (re-)establish the relationships contained in the rule or
rules which failed. If a relationship did previously hold, information about subsequent changes can
be used to guide the resolution process. This information is available in the work record of each
ViewPoint, along with a record of the results of previous consistency checks.

During the resolution of an inconsistency, the ViewPoint owners may wish to define new
relationships between the ViewPoints, which are not encoded in any of the consistency rules.
These are specific relationships which only apply to the two ViewPoints involved, or which are not
expected to hold generally. Such relationships are also recorded in the work record, so that future
changes which affect these relationships can be monitored.

Various actions may be taken by the ViewPoint owners during the resolution process. Some
actions will alter one or other of the ViewPoints. Other actions might not alter the ViewPoints, but
may analyse the nature of the inconsistency. The process may entail one ViewPoint owner
requesting the other to take a particular action. When a sequence of actions resolves the
inconsistency, both ViewPoints are notified, for the same reason that both are notified of the results
of any consistency checks.

Our approach to supporting the resolution process is through the provision of a set of potential
resolution actions, which the ViewPoint owners may wish to apply. The actions are defined by the
method designer, as part of the process of defining the consistency relationships. Possible
resolution actions are associated with each consistency rule in the process model. In this way, each
rule will have a number of actions that may be performed in the event that the rule fails. Guidance
for selecting among these actions is derived from information in the process model, along with
information about the history of the ViewPoints in question.

8 . 1 . Conflict and Inconsistency

To understand the resolution process, it is helpful to be clear about what is being resolved. We
distinguish between inconsistency and conflict. An inconsistency occurs if a rule has been broken.

- 14 -

The rules are entered by the method designer, to specify the correct use of the method. Hence,
what constitutes an inconsistency in any particular situation is entirely dependent on the rules
entered during the method design. Rules will cover the correct use of a notation, and the
relationships between different notations.

Conflict is the interference in the goals of one party caused by the actions of another party
(Easterbrook, et al., 1993). For example, if one person makes changes to a specification which
interfere with the developments another person was planning to make, then there is a conflict. This
does not necessarily imply that any consistency rules have been broken. The definition says
nothing about whether the conflict is intended by either party. Finally we define a mistake as an
action that would be acknowledged as an error by the perpetrator of the action; some effort may be
required, however, to persuade the perpetrator to identify and acknowledge a mistake.

Inconsistency is a property of the state of a collection of ViewPoints. Conflicts and mistakes are
properties of the actions that ViewPoint owners take on their ViewPoints. In other words, a given
specification can be inconsistent, while actions on that specification may be mistaken or conflictual.
Hence, we can test a specification for the existence of inconsistency, but we cannot test for
conflicts or mistakes. Each inconsistency is considered to be either the result of a conflict between
the ViewPoint owners3, or the result of a mistake. Note that a mistaken or conflictual action might
not necessarily result in any inconsistency in the set of ViewPoints.

8 . 2 . Supporting Resolution

Consider the inconsistencies that arose in our scenario. The inconsistencies in figures 1 and 5 are
identical, in that the same consistency rule is broken: no ViewPoint exists to represent the non-
primitive process. In figure 1 the appropriate resolution is to create the missing ViewPoint. In
figure 5 the appropriate resolution is either to delete the process or to mark it as non-primitive.
Hence, there are at least three actions that might be offered to the ViewPoint owner when this
particular check fails.

Furthermore, the choice between these three actions can be narrowed by reasoning about the
history of the two ViewPoints. In particular, the key difference between the two cases is that for
the latter one the relationship in question did hold at some point in the past. For this particular
relationship, if it has never held in the past, it is likely that the decomposition ViewPoint has not yet
been created. If it has held, this indicates that the decomposition ViewPoint has since been deleted.
Note that in either case, the result is not conclusive. For example, if the decomposition ViewPoint
was created and deleted without the check ever being applied, there will be no record that the
relationship did hold at one point. Accordingly, this type of reasoning is used only to recommend a
default action, and not to resolve the inconsistency automatically.

8 . 3 . Expressing Resolution Actions

Each resolution action has the following components:

• A short label allows the action to be presented within a menu of possible actions.

• A piece of text explains the rationale for the action. This explanation should assist the method user
in deciding whether the action is appropriate.

• A piece of code which performs the action. In some cases this will perform an edit on the
ViewPoint’s description. In other cases it will merely invoke one of the tools provided to support
conflict resolution, or request the other ViewPoint owner to perform some action.

The process model associates preconditions and postconditions with each action. The preconditions
determine the context under which the action is appropriate. For instance, some preconditions will
associate the action with the failure of one or more consistency checks, whilst other preconditions
may further restrict the applicability of the action. The post-conditions define the results of applying
the action. These indicate whether the action fixes any inconsistencies, or whether it sets up
conditions for other actions to be applied.

3 Where two ViewPoints share the same owner, an inconsistency between them may indicate the owner is in conflict
with herself.

- 15 -

The range of possible actions is large. Possibilities include: a transfer of information from one
ViewPoint to another; a name change to prevent a clash or bring two ViewPoints into agreement; an
analysis of the situation to determine whether conditions hold for more specific actions; invocation

- 18 -

described in this paper. Several software engineering methods have been implemented, and
experience with the process of method design has been valuable in refining our approach
(Nuseibeh, Finkelstein, & Kramer, 1994). For each of the issues raised by the scenario in this
paper, we have sketched out the approach and tested it on small examples. We have devised further
experiments for each of the issues described, and are currently investigating the applicability of the
approach using larger examples.

1 1 . 1 . Advantages

This approach to computer support for concurrent software engineering provides the flexibility to
support distributed activities without assuming perfect communication links. Inconsistencies are
tolerated, allowing separate designers to pursue their ideas without being constrained because of
conflicts with other members of the team. Inconsistencies are explicitly resolved at appropriate
stages, and guidance is provided for resolution through local process models. Resolution of
inconsistency does not prevent the ViewPoints becoming inconsistent again, but information about
the relationship is retained to assist repairing subsequent inconsistencies.

An important advantage of this approach is that it more accurately reflects actual working practices.
Tolerance of inconsistency allows actions affecting more than one ViewPoint to be de-coupled.
This facilitates distributed working by allowing responsibility to be devolved to individual
ViewPoints. All decisions regarding development of a ViewPoint, including decisions about
resolving inconsistencies with other ViewPoints, are taken locally. The principle of local action and
local responsibility is further reinforced by the provision of a local process model in each

- 19 -

(ESF). The authors would like to acknowledge the constructive comments of Martin Feather, Fox
Poon and Amer Al-Rawas on an earlier version of this paper.

References

Alderson, A. (1991). Meta-CASE technology. In Endres & Weber (Ed.), European Symposium
on Software Development Environments and CASE Technology, Königswinter, June 1991,
(vol. LNCS 509, pp. 81-91). Springer-Verlag.

Browen, J., & Bahler, D. (1992). Frames, Quantification, Perspectives, and Negotiation in
Constraint Networks for Life-Cycle Engineering. International Journal of Artificial Intelligence
in Engineering, 7, 199-226.

Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber, T. R., Mark, W.
S., Tenenbaum, J. M., & Weber, J. C. (1993). PACT: An Experiment in Integrating
Concurrent Engineering Systems. IEEE Computer, 26(1), 28-37.

Easterbrook, S. M. (1991). Resolving Conflicts Between Domain Descriptions with Computer-
Supported Negotiation. Knowledge Acquisition: An International Journal, 3, 255-289.

Easterbrook, S. M., Beck, E. E., Goodlet, J. S., Plowman, L., Sharples, M., & Wood, C. C.
(1993). A Survey of Empirical Studies of Conflict. In S. M. Easterbrook (Eds.), CSCW: Co-
operation or Conflict? (pp. 1-68). London: Springer-Verlag.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., & Goedicke, M. (1992). Viewpoints:
a framework for integrating multiple perspectives in system development. International Journal
of Software Engineering and Knowledge Engineering, 2(1), 31-57.

Finkelstein, A. C. W. F., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994).
Inconsistency Handling in Multi-Perspective Specifications. IEEE Transactions on Software
Engineering (to appear).

Gotel, O. C. Z., & Finkelstein, A. C. W. (1994a). An Analysis of the Requirements Traceability
Problem. In Proceedings of the IEEE International Conference on Requirements Engineering
(ICRE-94), Colorado Springs, April 1994.

Gotel, O. C. Z., & Finkelstein, A. C. W. (1994b). Modelling the Contribution Structure
Underlying Requirements. In Proceedings of the First International Workshop on
Requirements Engineering: Foundations of Software Quality (REFSQ-94), June 1994.

Hailpern, B. (1986). Special issue on multiparadigm languages and environments. IEEE Software,
3(1), 10-77.

Jackson, M., & Zave, P. (1993). Domain Descriptions. In IEEE International Symposium on
Requirements Engineering, San Diego, 4-6 January 1993, pp. 56-64. IEEE Computer Society
Press.

Kramer, J., & Finkelstein, A. C. W. (1991). A Configurable Framework for Method and Tool
Integration. In Proceedings of European Symposium on Software development Environments
and CASE Technology, Königswinter, Germany, June 1991, (vol. LNCS 509, pp. 233-257).
Springer-Verlag.

Meyers, S., & Reiss, S. P. (1991). A System for Multiparadigm Development of Software
Systems. In Proceedings of the Sixth International Workshop on Software Specification and
Design, Como, Italy, 25-26th October 1991, pp. 202-209.

Nuseibeh, B., & Finkelstein, A. C. W. (1992). ViewPoints: A vehicle for Method and Tool
Integration. In Proceedings of the IEEE International Workshop on Computer-Aided Software
Engineering (CASE-92), Montreal, Canada, 6-10th July 1992.

Nuseibeh, B., Finkelstein, A. C. W., & Kramer, J. (1993). Fine-Grain Process Modelling. In
Proceedings of the Seventh International Workshop on Software Specification and Design
(IWSSD-7), Redondo Beach, CA, 6-7 December 1993, pp. 42-46. IEEE Computer Society
Press.

- 20 -

Nuseibeh, B., Finkelstein, A. C. W., & Kramer, J. (1994). Method Engineering for Multi-
Perspective Software Development. Information and Software Technology Journal, (to
appear).

Nuseibeh, B., Kramer, J., & Finkelstein, A. C. W. (1993). Expressing the Relationships Between
Multiple Views in Requirements Specification. In Proceedings of the 15th International
Conference on Software Engineering (ICSE-93), Baltimore, 17-21 May 1993, pp. 187-200.
IEEE Computer Society Press.

Nuseibeh, B., Kramer, J., & Finkelstein, A. C. W. (1994). A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification. IEEE Transactions on
Software Engineering (to appear).

Wasserman, A. I., & Pircher, P. A. (1987). A Graphical, Extensible Integrated Environment for
Software Development (Proceedings of 2nd Symposium on Practical Software Development
Environments). SIGPlan Notices, 22(1), 131-142.

Wile, D. S. (1991). Integrating Syntaxes and their Associated Semantics (Technical Report No.
RR-92-297). USC/Information Sciences Institute.

Wileden, J. C., Wolf, A. L., Rosenblatt, W. R., & Tarr, P. L. (1991). Specification-level
interoperability. Communications of the ACM

