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Abstract

Neural network outputs are interpreted as parameters of statistical distri-

butions. This allows us to �t conditional distributions in which the parameters

depend on the inputs to the network. We exploit this in modelling multivari-

ate data, including the univariate case, in which there may be input-dependent

(e.g. time-dependent) correlations between output components. This provides

a novel way of modelling conditional correlation as well as providing input-

dependent (local) error bars.

1 Introduction

Neural networks provide a way of modelling the statistical relationship between a

dependent variable Y and an independent variable X. For example, X could be

�nancial data up to a certain time and Y could be a future stock index, exchange

rate, option price etc. Alternatively X could represent geophysical features of a

prospect and Y could represent mineralization at a certain depth. In general X and

Y can be vectors of continuous or discrete quantities.

Suppose that the conditional distribution of Y belongs to a family of distributions

characterised by a �nite set of parameters which are functions of conditioning values

of X. These functions, which in general will be non-linear, can then be modelled

by a neural network. For discrete distributions this approach has been known for

some time in the form of the softmax rule (Bridle, 1990). Bishop (1994) extends

this framework to absolutely continuous distributions, in particular to the case of

�nite Gaussian mixtures. The case of a single kernel is treated independently by

Nix and Weigend (1995). Bishop uses radial kernels though it is straightforward to

extend the approach to Gaussians with diagonal covariance matrices. The purpose
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of this paper is to consider the case of multivariate data in which the conditional

covariance matrix may be non-diagonal.

2 Multivariate data

The conditional distribution of the n-dimensional quantity Y given X = x is as-

sumed to be described by the multivariate Gaussian density
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where �(x) is the vector of conditional means and �(x) is the conditional covariance

matrix. Both � and � are understood to be functions of x in a way that depends on

the outputs of a neural network when the conditioning vector x is given as input.

It is assumed that the network has linear output units and that � and � are

determined by the activations of these units. We now discuss the link between

network outputs and the components of � and �. The mean presents no problem.

The network will be required to have n output units whose activations, fz
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To represent the matrix A we stipulate that the network is provided with an addi-

tional set of dispersion output units whose activations fz
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and partial derivatives with respect to



4.1 Univariate data

Weigend and Nix (1994) discuss univariate data (n = 1) drawn from normal distri-

butions N(�; �) with means

�(x) = sin(2:5x) sin(1:5x)

and variances

�

2

(x) = 0:01 + 0:25 [1� sin(2:5x)]
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1000 training examples were generated using this example with x drawn randomly

from a uniform distribution on [0; �]. The training set is shown in Figure 1. Results

are shown in Figure 2. These were obtained using a simple fully connected 3-

layer network with 1 input unit, 10 hidden units and 2 output units. Networks

were trained using the optimisation and regularisation algorithms of Williams (1991,

1995) which pruned the







5 Conclusion

Modelling correlation inevitably requires larger
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