Artificial Life as Theoretical Biology:

How to do real science with computer simulation

Geoffrey F Miller Cognitive and Computing Sciences University of Sussex Falmer, Brighton B , QH, England geoffm cogs susx ac uk

Abstract

Arti cial Life A Life research offers, among other things, a new style of computer simula tion for understanding biological systems and processes. But most current A Life work does not sho

Februar 🗖 🗖 🤧 4.5

This romantic, colonialist view seems implicit in much of Arti cial Life A Life research It maintains a kind of Orientalism of the Organic that views complex adaptive systems as newly dis covered things and evolution, development, and learning as newly disco

designed through CS research. CS methods are much closer to analytical methods used by engineers such as nite element analysis, stability analysis, or perturbation analysis than to empirical methods used by scientists. This basic distinction leads to several other differences between RS and CS, which I will list with brazen simplicity and tongue slightly in cheek

RS seeks knowledge of nature. whereas CS seeks pro t through technical improvements in hardware and software RS chooses problems for their theoretical and practical importance. whereas CS chooses problems for their economic relevance RS analyzes existing natural systems through developing speculative theories subject to hypothesis testing by observation. experimentation. simula tion. whereas CS builds new arti cial systems through engineering and debugging RS requires skills in observation. experimentation. comparative analysis. statistics. scholarship. interdisciplinary commu nication. and bold imagination. whereas CS requires skills in programming and mathematical analysis RS rewards discoveries for their theoretical generality. experimental clarity. and practical applicability. whereas CS rewards inventions for their patentability. marketability. and complexity RS advances through public. loosely organized collaborations called research areas by huge numbers of researchers working over many years. whereas CS advances through largely private. more tightly organized collaborations called project teams by smaller numbers of programmers working over seve

Februar 59 45

4.5

whereas the phenomena studied by computer science e.g. computation depend on the science for their very existence Computer science is more similar in nature and spirit to architecture and aeronau tical engineering than it is to physics or biology.

Granted. computer science has been spectacularly successful as an engineering discipline⁴ computer speeds and computer sales have grown exponentially over several decades. continuing to double every few years. But computer scientists run into trouble when they try to do real science, because they are simply not trained for it. Whenever computer scientists try to do real psychology for example, a boom and bust cycle results, as in arti cial intelligence during the s, cognitive science during the s, and neural networks research during the s. With suggestive initial results come wild promises of further progress and massive in uxes of research funding; intellectual stagnation sets in as the promised conceptual break throughs remain elusive, but modestly useful real world applica tions keep the eld limping along for another few years. I am afraid that A Life will repeat this same pattern

Again and again, the same problems arise when computer scientists develop a new eld that 04 claims to be real science. • the eld shows historical amnesia, interdisciplinary blind 00 4 ness, and ignorance of current work in the relevant existing sciences oo o the eld lacks explicit hypothesis testing, systematic observation, controlled experimentation, and statistical 00 h • the eld avoids recognizing or understanding its failures and over analysis 0 research fad to another, failing to replicate and extend its ndings in ways that could lead to a concep tually integrated discipline Many of these problems result from an engineering mentality that seeks to build impressively complicated masterpiece systems rather than to develop simple theories that explain complex phenomena Masterpieces of computer programming such as those developed by Ph D students in arti cial intelligence or cognitive science are almost always useless as scienti c models because they usually require too much pre processing of the input. too generous an interpreta tion of the output, and too many hidden assumptions and hacks

These precedents suggest that unless A Life is very careful, it will become a historical curios ity in short order after being more or less successful in squandering many millions of dollars of pub lic research funding that could have been better spent on a few bright evolutionary biologists and evolutionary psychologists. The remainder of this paper suggests some ways we can learn from the mistakes of the past, by identifying some methodological heuristics for doing A Life as good theoreti cal biology, and some areas of biology that may bene t especially from A Life simulations.

3 Six Methodological Heuristics for A-Life

This step is much harder than it sounds. Biology is a mature, successful science that has become quite sophisticated over the last few decades. One cannot just pick up a copy of

n Dawkins, $\mathbf{R}_{\mathbf{0}}$ or an introductory undergraduate biology textbook. Ind an interesting sounding issue, and forge ahead with a simulation A basic maxim of modern science is o $\frac{1}{2}$, o $\frac{1}{2}$, o $\frac{1}{2}$, n, o, o $\frac{1}{2}$, o, $\frac{1}{2}$, \frac

Februar 🗖 🗖 🤧 4 5

biological issues much better than A Life researchers do.

So, it is dif cult to nd a signi cant unsolved problem that can be addressed through A Life computer simulations, and that has not already been addressed by standard methods of theoretical biol ogy e g verbal argument. formal population genetics models, optimality theory, evolutionary game theory

Februar 🗖 🗖 🤧 4.5

Geoffrey F Miller

Februar 🗖 🗖 🤧 4.5

comparative method Harvti

Geoffrey F Miller

9

Februar 5 59 45

uniform age and sex structure, and no geographic structure. Phenotypes are usually skipped entirely, without attending to life history, learning, or contingent behaviour. The results of such models can be important in understanding simple evolutionary dynamics, and in exploring the implications of hypotheses about those dynamics. But such models are very weak at coping with phenomena such as complex phenotypes, exible behaviour, co evolution, or evolutionary innovation.

A powerful way of using A Life simulations is to take an existing formal model from theoreti

Februar 59 45

intellectually exciting It is also more fun to speculate about simulation s metaphysics than its methodology[•] philosophizing about A Life has its own seductions and snares that distract attention from A Life s real potentials and problems as science.

To ensure A Life s relevance as theoretical biology, we must develop better methods for mea surement and experimentation in our simulations. Whereas graphics may brie y catch the eyes of the oretical biologists, only solid experiments will win over their hearts. Our observational and experi mental methods will have to approach the sophistication of taxonomy, comparative biology, ethology, psychology, ecology, and evolutionary biology. And we will have to develop new methods, because simulation can yield data that empirical biology cannot

Early A Life research consisted largely of proof of concept demonstrations⁴ local interactions can lead to certain emergent effects suggestive of biological systems. Such results were important in establishing the concepts of self or

Februar 🗖 🗖 🤧 4.5

Geoffrey F Miller

-

infer the dynamics of long term processes. Such processes could not be studied directly in replicable, controlled experiments that could yield large amounts of relevant data.

Simulation allows access to much richer information as evo

Februar 🗖 🗖 🤧 4 5

speci c problems, it is not trivial to know whether the code is working appropriately. Making sure the code compiles and the program doesn t crash is just the rst step. With humbling frequency, a simula tion that seems to produce reasonable and interesting data under one set of conditions will produce, under slightly different conditions, weeks later and often immediately before a conference a noma lous output that highlights some hidden, ting, critical bug that invalidates weeks of results. There are three strategies for a

Februar R 99 45

biologists bother to read it

4 What distinguishes A-Life from other biological simulation?

Simulation is no stranger to biology. Theoretical biology papers that include simulations appear regularly in journals such as $An \stackrel{n}{} \stackrel{n}{} \stackrel{n}{} o \stackrel{n}{} \stackrel{o}{} \stackrel{o}{} \stackrel{o}{} \stackrel{n}{} \stackrel{o}{} \stackrel{o}{} \stackrel{o}{} \stackrel{n}{} \stackrel{o}{} \stackrel{o}{} \stackrel{o}{} \stackrel{n}{} \stackrel{o}{} \stackrel{o}{} \stackrel{o}{} \stackrel{n}{} \stackrel$

does A Life offer that theoretical biology does not already have

Traditional mathematics and simulations in theoretical biology try to capture self organizational or evolutionary dynamics directly in equations or simple procedures that aim straight for the collective, emergent level Such methods are only tractable when they implicitly represent the components of biological systems as simple, stable, homogeneous, and predictable Equations don t generally allow surprising, emergent behaviour and neither do simulations based on equations.

The key advance in A Life has been to allow emergence by representing individual bio logical things explicitly as computational procedures. allowing self organizational and evolutionary processes to emerge spontaneously from these things, and making observations and measurements about the resulting patterns and dynamics at the individual and collective levels see Taylor Jeffer son **R** of This advance has allowed A Life to explore the interaction of many biological units molecules, cells, organisms, or populations at several levels of description over different time scales behaviour, development, or evolution

Februar 599 4.5

A Life has used emergence in two main ways[•] as a proof of concept to show that certain bio logical phenomena can arise from distributed interactions among many local components. or as an extension to make current theoretical biology models more complete and realistic. The rst way has led to some messianic predictions that theoretical biology will be revolutionized. perhaps with emer gence replacing evolution as the central explanatory principle of life. The second way is more conser vative and. I think, more useful[•] it embraces emergence without getting obsessed with it Kauffman s research, despite its Emergentist rhetoric, seems a powerful example of this second strategy.

A Life simulations have other advantages Conceptually. the requirements of programming force researchers to make assumptions explicit and processes computable; formal equations are actu ally quite ambiguous compared to computer programs. Computationally, the speed of modern hard ware allows biological systems to be simulated at levels of complexity unimaginable only a couple of decades ago Experimentally, simulation offers a high degree of control. exibility, and replicability. Analytically, simulation allows accurate measurement of very large amounts of data, and automatic statistical analysis and visualization of that data Socially, simulation code can be shared over com puter networks, promoting easy replication and extension of results.

There is a continuum between A Life as high level theoretical biology, studying general pro cesses and patterns of evolution, and A Life as empirical biology, modelling speci c data from certain taxa Some A Life models the mechanisms or effects of a certain set of behaviours from a single species; but many biologists already develop such models routinely in their empirical work. More use fully, A Life can model more general classes of behaviours shared across many species, such as courtship, cooperation, pursuit and evasion, communication, collective behaviour, or ocking Models that predict different varieties of the behaviour for different species under different conditions would prove especially valuable to empirical biologists.

Februar 🗖 🗖 🤧 4 5

- 71

5 Open questions in theoretical biology that A-Life might usefully address

Given these strengths of A Life, we can turn now to ask what open questions in theoretical biology might be especially amenable to A Life simulation. The following areas seem promising[•] evolutionary innovations, interactions between different adaptive processes and different selective forces, origins and effects of mental and behavioural adaptations, and life as it could be a logically and extra terrestrially.

Theoretical biology cannot yet explain major evolutionary innovations such as the the evolu tion of life Eigen Schuster, 45 sex Williams, 45 Margulis Sagan, ; Maynard Smith, , Michod Levin, , multi cellular bodies Buss, , or the human brain Miller, ; Ridllain maj e; Mara

Februar 59 45

٩,

and comparative psychology only reveal the outcomes of neural and cognitive evolution, and fossils do not provide details of neural circuits during evolution A Life systems that explicitly simulate the evolution of nervous systems interacting with each other and with complex environments may be our only hope for constructing theories of mental and behavioural evolution

Once behavioural and cognitive adaptations have evolved, they can in uence the further course of evolution within and across species. The role of mind in guiding evolution has usually been overlooked entirely, or con ated with a mystical, progressivist, animism as in the work of Her bert Spencer -445 see Godfrey Smith -9 and William McDougall -9 ; see Boden -9 . Only a few biologists developed a Darwinian view of minds as selective forces Morgan -; Thompson -9 ; see Richards -9 . But very recently, several theoretical biologists have begun to recognize the importance of perception and cognition as selective forces in the evolution of diverse phenomena such as camou age, mimicry, warning colouration, sexual ornaments, owers, fruits,

Februar 59 45

- 71

6 Does Strong A-Life allow stronger theoretical biology research than Weak A-Life?

The debate over strong A Life computer processes as realizations of living systems versus weak A Life computer processes as simulations of living systems can be extended in a method ological direction by asking[•] would it make any difference to theoretical biology if an A Life system were construed as a realization rather than a simulation Clearly, empirical biology would be affected[•] we would have to add a sixth kingdom of life to the current ve see Margulis Schwartz^{*}, and I suppose that databases of biological phylogenies would have be be updated every time a new Ph D. thesis in A Life was written Also granted is that acceptance of strong A Life would imply that life like mind is a functional, emergent property of certain systems with certain internal relations, exter nal relations, and evolutionary histories see Millikan^{*}, But my focus is on biological theory[•] what could we learn about life and evolution from ρn strong A Life that we could not learn from doing weak A Life

In answering this question, we must appreciate that many theoretical biologists view instances of real terrestrial life as little more than the outcomes of simulations by Nature to inform them about how evolution works. That is, empirical biology constrains biological theory in almost the same way that simulation does, so for some theoretical biologists, even real terrestrial biology could be consid ered weak A Life. Life forms that result from arti cial selection by human breeders or genetic engi neering also blur the distinction between realization and simulation. If one makes a strong division between Nature and Culture, such life forms are experimental simulations of what ρ happen if a lineage were subjected to some selective pressure or mutation in Nature; from a more integrated per spective, such life forms are simply the outcome of a thoroughly Natural process that happens to include humans as selective forces. Likewise, experimental biology research that records animal behaviour in unnatural laboratory conditions could be viewed either as realizations of behaviour n

Februar 599 4.5

x , or simulations of natural behaviour. Does it make any difference to theoretical biology either way

Consider an issue in evolutionary theory that might be solved in two ways Ms Goodmaths develops a mathematical population genetics model that represents changes in gene frequencies using differential equations, whereas Mr Badmaths programs an A Life model that represents genes them selves in a genetic algorithm. In the latter case, one might argue that the genes are alive in the lim ited sense of replicating because they really are copied within computer data structures. Suppose the two models are both good and give the same answer. The aliveness of the genes in the A Life model is simply irrelevant to the theoretical biology. If the models are formally equivalent, one can move smoothly from the differential equations through discrete iterative approximations to genetic algorithms without affecting the results in the slightest. The evolutionary dynamics have multiple realiz ability in formal equations, computational approximations, and procedural simulations. Only if Mr Badmaths simulation goes beyond the complexity that Ms. Goodmaths equations can represent, is there any point in doing the simulation.

An analogy to high energy physics may also help here. The events that occur within colliders at CERN have an ambiguous status. Empirical physicists treat them as real physical events that reveal forces operating outside colliders. But for theoretical physicists, colliders may as well be viewed as very special, very expensive computers that simulate the physics of the very early universe, shortly after the Big Bang. It does not really matter for theoretical physics whether collider events are viewed as realizations of current physics or simulations of early universe physics, because in both cases the problem remains of how to generalize to processes outside the collider

Geoffrey F Miller

Februar 🗖 🗖 🤧 4.5

Todd R . Such simulations will probably become the most important scienti c tool for under standing evolution since Darwin R - # R - R - rst de

Februar 5 59 45

Acknowledgments

This research was supported by NSF NATO Post Doctoral Research Fellowship RCD **445** and NSF Research Grant INT **9**. Thanks to Maggie Boden. Dave Cliff. Inman Harvey. Peter Todd. and Michael Wheeler for useful discussions.

References

- Ackley, D., Littman, M. **R99** Interactions between learning and evolution. In C. Langton, C. Taylor, J. D. Farmer, S. Rasmussen Eds., A *II*, pp. 4.5 New York Addi son Wesley.
- Ackley, D , Littman, M (\mathbf{R}) A case for Lamarckian evolution. In C. Langton Ed , A (\mathbf{R}) $IIL_{\mathbf{R}}$ pp. (\mathbf{R}) New York Addison Wesley.
- Alcock, J. Rog An o on o on the Ath Ed. Sunderland, MA[•] Sinauer Associates

Andersson, M. B. (99) $x^{\frac{1}{2}}$ on Princeton U. Press.

Barkow, J. H., Cosmides, L., Tooby, J. Eds. **R99** n = 0 on n = 0 of n =

Barth, F. G. R. n n o o o o n _ Princeton U. Press.

- Bateson, PR9 The active role of behavior in evolution In M. W. Ho S. W. Fox Eds $\sim 0^{-r}$
- Bedau, M., Packard, N. **R99** Measurement of evolutionary activity, teleology, and life. In C. Langton, C. Taylor, J. D. Farmer, S. Rasmussen Eds., A York Addison Wesley.
- Boden, M \square 0 x $\neg n$ 0 n n 0 o Harvard U Press.

Februar 5, 99 4.5

Boekhorst, I. J. A. te, Hogeweg, P. \blacksquare Boekhorst, I. J. A. te, Hogeweg, P. \blacksquare Boekhorst, I. J. A. te, Hogeweg, P. \blacksquare Bigeweg, P. Bigew

I MIT Press Bradford Books.

Boyd, R.,Richerson, P J, \mathbb{R} 4.5nooouChicago Press.Buss, D. M. \mathbb{R} ooonnn

o n n on n' n n Oxford U. Press.

- Cariani, P. R. 99 Emergence and arti cial life. In C. Langton, C. Taylor, J. D. Farmer, S. Ras mussen Eds. A 4 II pp. 459 New York' Addison Wesley.
- Cliff, D. (n, p) = 0. Computational neuroethology A provisional manifesto. In J. A. Meyer S. W. Wil son Eds. (p, p) = (n, p) = (p, p)
- Cliff, D₂, Miller, G F in press. Co Evolution of pursuit and evasion II[•] Simulation methods and results. For A^{*} , ρ_{-}

Clutton Brock, T. H. (n, n) (n, n) (n, n) (n, n) Princeton U. Press.

Collins, R. J., Jefferson, D. R. **R** 99 The evolution of sexual selection and female choice. In F. J. Varela and P. Bourgine Eds, $\rho^{(n)}$, $n^{(n)}$, $\rho^{(n)}$,

Cambridge U. Press

Daly, M., Wilson, M. \square x o $on^{\frac{1}{2}}n$ $\frac{1}{2}$ o nd Ed. Boston Willard Grant Press.

Februar 🗖 🗖 🤧 4.5

Daly

Februar 5, 99 45

McGraw Hill

- Endler, J. A (3, 9) Signals, signal conditions, and the direction of evolution A (3, n, 3, 3)
- Fagen, R R 9 R ... An 3 3 ... Oxford U. Press.
- Fisher, R A \blacksquare n \uparrow o o n \uparrow on Clarendon Press.
- French, R M, Messinger, A \blacksquare Genes, phenes, and the Baldwin Effect Learning and evolution in a simulated population. In R A Brooks P. Maes Ed, A \checkmark I \blacksquare P. Maes Ed, A \checkmark I \blacksquare P. MIT Press Bradford Books

Foley, R \square Ano n n n n n n o on o - Harlow, Essex,

England[•] Longman Scienti c Technical

- Futuyama, D. J. R. o on on Ed. Sunderland, MA[•] Sinauer
- Futuyama, D. J. Slatkin, M. Eds. **R9** ... o o on Sunderland, MA[•] Sinauer

Gale, J. S. (n) = (n + n) (n + n) (n + n) J. S. (n) = (n + n) (n) (n + n) (n) (n +

Gallistel, C. R. \square 99 $o^{3}n^{3}$ on $o^{3}nn_{-}$ MIT Press.

- Godfrey Smith, P. R. 99 Spencer and Dewey on life and mind. In R. A. Brooks P. Maes Ed., *A* ¹/₂ *L* ¹/₂ *P* ¹/₂ *B*. MIT Press Bradford Books.
- Guilford, T_c Dawkins, M. S. $\square \mathcal{P} \mathcal{P}$. Receiver psychology and the evolution of animal signals. An $\mathcal{P} = \mathcal{P} \mathcal{P} \mathcal{P}$
- Harvey, P. H., Pagel, M. D. R. P. , o 7 7 , o n o on o on o Stord U. Press

Februar 🗖 🗖 🤧 4 5

Hirschfeld, L. A., Gelman, S. A. Eds. **R99** n n n o n n o n n o n n

- Kauffman. S. **R99** . o n o o '' n'' o n'' n o o n Oxford U.Press.
- Kohn, D. Ed. (\mathbf{R}) **4**. (\mathbf{R}) **b**. Princeton U. Press.
- Langton, C. \mathbb{R} , \mathbb{P} . Arti cial life. In Langton, C. Ed., A, \mathbb{P} , pp \mathbb{R} . New York Addison Wesley.
- Lewin, R (n, p) (n, p) (n, p) (n, rd Ed) Boston Blackwell Scienti c
- Mangel, M., Clark, C. W. ,

9

Februar 5, 99 45

Miller, G. ERS. Two dynamic criteria for validating claims of optimality $\frac{3}{2} o^{\frac{3}{2}} \frac{3}{2} n - \frac{3}{2} n$

- n , 4 9.
- Miller, G. F. R. S. Exploiting mate choice in evolutionary computation. Sexual selection as a process of search, optimization, and diversi cation. In T. C. Fogarty Ed., ρ on ρ , n on ρ on ρ of AA is In n is n is $\rho n \rho$ if ρ of AI of n o ρ opp. 4.59. Springer Verlag.
- Miller, G. F., Cliff, D. Roo Protean behavior in dynamic games Arguments for the co evolution of pursuit evasion tactics in simulated robots. In D. Cliff, P. Husbands, J. A. Meyer, S. Wil son, ρ An γ ρ An γ ρ n ρ In n ρn n on r γ $\rho n, \rho$ An γ ρ γ ρ n ρ In n ρn n ρn r
- Miller, G. E., Freyd, J. J. Rogo, n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
 n
- Miller, G. F., Todd, P. M Roo Exploring adaptive agency I' Theory and methods for simulating the evolution of learning In D. S. Touretsky, J. L. Elman, T. J. Sejnowski, G. E. Hinton Eds., o n o on on o oo op pp. 4.5 San Mateo, CA' Morgan Kaufmann.
- Miller, G. E., Todd, P. M. R. S. Let evolution take care of its own. $n = \rho^n n n n$
- Miller, G. E., Todd, P. M. Rogo Evolutionary wanderlust Sexual selection with directional mate preferences. In J. A. Meyer, H. L. Roitblat, S. W. Wilson Eds., o An b o An

Geoffre

Februar 🗖 🗖 🤧 4.5

nnnn444

Sober, E Rog Learning from functionalism Prospects for strong arti cial life. In C. Langton, C. Taylor, J. D. Farmer, S. R.

Februar **F 99 4** ⁵

Webb, B **R99** Robotic experiments in cricket phonotaxis. In D. Cliff, P. Husbands, J. A. Meyer,

nnnnnnpNew York* Boni and LiverightWilliams, G. C. R.9AnnnnWilliams, G. C. R.9AnnnnWilliams, G. C. R.94xnoonPrinceton U. Press.Williams, E. O. R.94oonnWilson, E. O. R.94oonnnWright, S. R.9The roles of mutation, inbreeding, crossbreeding, and selection in evolution o_{-}

x In_____ n ____ A.5