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elements.

This problem is overcome in DATR in the following way: such exhaustively listed

path/value statements are indeed present in a description, but typically only implicitly

present. Their presence is a logical consequence of a second set of statements, which

have the concise, generalisation-capturing properties we expect. To make the distinction

sharp, we call the �rst type of statement extensional and the second type de�nitional.

Syntactically, the distinction is made with the equality operator: for extensional state-

ments (as above), we use =, while for de�nitional statements we use ==. And, although

our �rst example of DATR consisted entirely of extensional statements, almost all the

remaining examples will be de�nitional. The semantics of the DATR language binds the

two together in a declarative fashion, allowing us to concentrate on concise de�nitions of

the network structure from which the extensional \results" can be read o�.

Our �rst step towards a more concise account of Word1 and Word2 is simply to change

the extensional statements to de�nitional ones:

Word1:

<syn cat> == verb

<syn type> == main

<syn form> == present participle

<mor form> == love ing.

Word2:

<syn cat> == verb

<syn type> == main

<syn form> == passive participle

<mor form> == love ed.

This is possible because DATR respects the unsurprising condition that if at some node a

value is speci�cally de�ned for a path with a de�nitional statement, then the correspond-

ing extensional statement also holds. So the statements we previously made concerning

Word1 and Word2 remain true, but now only implicitly true.

Although this change does not itself make the description more concise, it allows us

to introduce other ways of describing values in de�nitional statements, in addition to

simply specifying them. Such value descriptors will include inheritance speci�cations

which allow us to gather together the properties that Word1 and Word2 have solely by

virtue of being verbs. We start by introducing a VERB node:

VERB:

<syn cat> == verb

<syn type> == main.

and then rede�ne Word1 and Word2 to inherit their verb properties from it. A direct

encoding for this is as follows:

Word1:

<syn cat> == VERB:<syn cat>

<syn type> == VERB:<syn type>

<syn form> == present participle

<mor form> == love ing.

Word2:

<syn cat> == VERB:<syn cat>

<syn type> == VERB:<syn type>

<syn form> == passive participle

<mor form> == love ed.

In these revised de�nitions the right hand side of the<syn cat> statement is not a direct

value speci�cation, but instead an inheritance descriptor. This is the simplest form of

4
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DATR inheritance, it just speci�es a new node and path from which to obtain the required

value. It can be glossed roughly as \the value associated with <syn cat> at Word1 is the

same as the value associated with <syn cat> at VERB". Thus from VERB:<syn cat>

== verb it now follows that Word1:<syn cat> == verb

6

.
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root>. This descriptor is equivalent to Word1:<mor root> and, since <mor root>

is not de�ned at Word1, the empty path de�nition applies, causing it to inherit from

Love:<mor root>, and thereby return the expected value, love. Notice here that each

element of a value can be de�ned entirely independently of the others; for <mor form
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This speci�es inheritance of <mor root> from the query node, which in this case is

Word1. The path <mor root> is not de�ned at Word1 but inherits the value love from

Love. Finally, the de�nition of <mor form> at VERB adds an explicit ing, resulting in a

value of love ing for Word1:<mor form>. However, had we begun evaluation at, say, a

daughter of the lexeme Eat, we would have been directed from VERB:<mor form> back

to the original daughter of Eat to determine its <mor root>, which would be inherited

from Eat itself. So we would have ended up with the value eat ing.

The analysis is now almost the way we would like it to be. However, by moving<mor

form> from
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<mor form> == "<mor "<syn form>">".

This statement employs a DATR construct, the evaluable path, which we have not

encountered before. The right hand side consists of a (global) path speci�cation, one

of whose component attributes is itself a descriptor, to be evaluated before the outer

path can be. The e�ect of the above statement is to say that <mor form> globally

inherits from the path given by the atom mor followed by the global value of <syn

form>. For Word1, <syn form> is present participle, so <mor form> inherits from

<mor present participle>. But for Word2,<mor form> inherits from<mor passive

participle>. E�ectively, the <syn form> is being used as a parameter to control

which speci�c form should be considered the morphological form. Evaluable paths may

themselves be global (as in our example) or local and their evaluable components may

also involve global or local reference.

Our analysis now looks like this:

VERB:

<syn cat> == verb

<syn type> == main

<mor form> == "<mor "<syn form>">"

<mor past> == "<mor root>" ed

<mor passive> == "<mor past>"

<mor present> == "<mor root>"

<mor present participle> == "<mor root>" ing

<mor present tense sing three> == "<mor root>" s.

Love:

<> == VERB

<mor root> == love.

Word1:

<> == Love

<syn form> == present participle.

Word2:

<> == Love

<syn form> == passive participle.

The entire analysis is somewhat larger than the original, but it encodes all the past and

present tense forms as well as all three participial forms. More importantly, almost all

the information is in the VERB node and is common to many verb lexemes

8

. Indeed, the

other nodes are as small as they reasonably could be: Love simply states that it is a

verb with morphological root love and Word1 simply states that it is a present participle

instance of Love.

Of course, Love is a completely regular verb. But DATR
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<mor present tense plur> == are

<mor past tense sing one> == <mor past tense sing three>

<mor past tense sing three> == was

<mor past tense plur> == were.

In this section we have moved from simple attribute/value listings to a compact,

generalisation-capturing representation for a fragment of English verbal morphology. In

so doing, we have seen examples of most of the important ingredients of DATR: local and
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are de�ned recursively, and come in seven kinds. The simplest descriptor is just an atom

or variable:

atom1

$var1

Then there are three kinds of local inheritance descriptor: a node, an (evaluable)

path, and a node/path pair. Nodes are primitive tokens, paths are descriptor sequences

(de�ned below) enclosed in angle brackets and node/path pairs consist of a node and a

path separated by a colon:

Node1

<desc1 desc2 desc3 ...>

Node1:<desc1 desc2 desc3 ...>

Finally there are three kinds of global inheritance descriptor, which are quoted

variants of the three local types just described:

"Node1"

"<desc1 desc2 desc3 ...>"

"Node1:<desc1 desc2 desc3 ...>"

A descriptor sequence is a (possibly empty) sequence of descriptors. The recursive

de�nition of evaluable paths in terms of descriptor sequences allows arbitrarily complex

expressions to be constructed, such as

15

:

"Node1:<"<atom1>" Node2:<atom2>>"

"<"<<Node1:<atom1 atom2> atom3>" Node2 "<atom4 atom5>" <> >">"

But the value sequences determined by such de�nitions are at: they have no struc-

ture beyond the simple sequence and in particular do not reect the structure of the

descriptors that de�ne them.

We shall sometimes refer to descriptor sequences containing only atoms as simple

values, and similarly (unquoted) path expressions containing only atoms as simple paths.

3.1.3 Sentences. DATR sentences represent the statements which make up a descrip-

tion. As we have already seen, there are two basic statement types, extensional and def-

initional, and these correspond directly to simple extensional and de�nitional sentences,

which are made up from the components introduced in the preceding section.

Simple extensional sentences take the form

Node:Path = Ext

where Node is a node, Path is a simple path, and Ext is a simple value. Extensional

sentences derivable from the examples given in Section 2 include:

Do:<mor past participle> = done.

Mow:<mor past tense sing one> = mow ed.

Love:<mor present tense sing three> = love s.

Simple de�nitional sentences take the form

Node:Path == Def.

where Node and Path are as above and Def is an arbitrary descriptor sequence. De�ni-

tional sentences already seen in Section 2 include:

Do:<mor past> == did.

VERB:<mor form> == "<mor "<syn form>">".

EN_VERB:<mor past participle> == "<mor root>" en.

15 A descriptor containing an evaluable path may include nested descriptors which are either local or

global. Our use of the local/global terminology always refers to the outermost descriptor of an

expression.

12
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There is a natural procedural interpretation of this kind of inheritance, in which

the value associated with the de�nitional expression is determined by \following" the

inheritance speci�cation and looking for the value at the new site. So given a DATR

description (i.e., a set of de�nitional statements) and an initial node/path query, we look

for the node and path as the left hand side of a de�nitional statement. If the de�nitional

statement for this pair provides a local descriptor, then we follow it, by changing one

or both of the node or path, and then repeat the process with the resulting node/path

pair. We continue until some node/path pair speci�es an explicit value. In the case of

multiple expressions on the right hand side of a statement, we pursue each of them

entirely independently of the others. This operation is local in the sense that each step

is carried out without reference to any context wider than the immediate de�nitional

statement at hand.

Declaratively speaking, local descriptors simply express equality constraints between

de�nitional values for node/path pairs. The statement:

Node1:Path1 == Node2:Path2.

can be read approximately as \if the value for Node2:Path2 is de�ned, then the value of

Node1:Path1 is de�ned and equal to it". There are several points to notice here. First,

if Node2:Path2 is not de�ned, then Node1:Path1 is unconstrained, so this is a weak

directional equality constraint. However, in practice this has no useful consequences, due

to interactions with the default mechanism { see Section 5.1 below. Second, \de�ned"

here means \de�ned by a de�nitional statement", that is a \==" statement: local inheri-
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For example, when a global path is speci�ed, it e�ectively \returns control" to the

current global node (often the original query node) but with the newly given path. Thus

in Section 2, above, we saw that the node VERB de�nes the default morphology of present

forms using global inheritance from the path for the morphological root:

VERB:<mor present> == "<mor root>".

The node from which inheritance occurs is that stored in the global context. So a

query of Love:<mor present> will result in inheritance from Love:<mor root> (via

VERB:<mor present>), while a query of Do:<mor present> will inherit from Do:<mor

root>.

Similarly, a quoted node form accesses the globally stored path value, as in the

following example:

Declension1:

<vocative> == -a

<accusative> == -am.

Declension2:

<vocative> == "Declension1"

<accusative> == -um.

Declension3:

<vocative> == -e

<accusative> == Declension2:<vocative>.

Here, the value of Declension3:<accusative> inherits from Declension2:<vocative>

and then from Declension1:< accusative>, using the global path (in this case the

query path), rather than the local path (<vocative>) to �ll out the speci�cation. So the

resulting value is -am and not -a as it would have been if the descriptor in Declension2

had been local rather than global.

We observed above that when inheritance through a global descriptor occurs, the

global context is altered to reect the new node/path pair. Thus after Love:<mor

present> has inherited through "VERB:<mor root>", the global path will be <mor

root> rather than <mor present>. When we consider quoted node/path pairs, it turns

out that this is the only property that makes them useful. Since a quoted node/path pair

completely respeci�es both node and path, its immediate inheritance characteristics are

the same as the unquoted node/path pair. However, because it also alters the global

context, its e�ect on any subsequent global descriptors (in the evaluation of the same

query) will be di�erent:

Declension1:

<vocative> == "<nominative>"

<nominative> == -a.

Declension2:

<vocative> == Declension1

<nominative> == -u.

Declension3:

<nominative> == -i

<accusative> == "Declension2:<vocative>".

In this example, the value of Declension3:<accusative> inherits from Declension2:

<vocative> and then from Declension1:<vocative> and then from Declension2:

<nominative> (because the global node has changed from Declension3 to Declension2)

giving a value of -u and not -i as it would have been if the descriptor in Declension3

had been local rather than global.

There are a number of ways of understanding this global inheritance mechanism.

The description we have given above amounts to a \global memory" model, in which

a DATR query evaluator is a machine equipped with two memories: one containing the

15
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The declarative interpretation of global inheritance suggests an alternative procedu-

ral characterisation to the one already discussed, which we outline as follows. Starting







DATR cogs csrp 382, November 1995

4. DATR techniques

The DATR fragments introduced above illustrate the basic descriptive resources pro-

vided by the language. We now present some further examples, showing how these basic

components combine to provide a powerful representation tool.

4.1 Case constructs and parameters

Evaluable paths allow the value of one path to be determined by the value of another.

More generally, the values of an arbitrary number of descriptors can be invoked as pa-

rameters in an evaluable path and thus determine the value of a particular node/path

pair. The familiar case construct of procedural programming languages is readily imple-

mented, as the following example describing English plural su�xes shows:

NOUN:

<plural> == <case of "<origin>">

<case of latin masculine> == -i

<case of latin neuter> == -a

<case of> == -s

<origin> == norman.

Cat:

<> == NOUN.

Datum:

<> == NOUN

<origin> == latin neuter.

Alumnus:

<> == NOUN

<origin> == latin masculine.

Here the value of the <origin
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we saw in Section 2 above, the passive participle form of sew is fully described by the

node de�nition for Word3.

Word3:

<> == Sew

<syn form> == passive participle.

For �nite forms, we could use a similar technique. From this,

Word4:

<> == Sew

<syn form> == present sing third.

we would want to be able to infer this:

Word4:

<mor form> = sew s

However, the components of <syn form>, present, sing, third are themselves values

of features we probably want to represent independently. One way to achieve this is to

de�ne a value for <syn form> which is itself parameterised from the values of these

other features. And the appropriate place to do this is in the VERB node, thus:

VERB:

<syn form> == "<syn tense>" "<syn number>" "<syn person>".

This says that the default value for the syntactic form of a verb is a �nite form, but

exactly which �nite form depends on the settings of three other paths, <syn tense>,

<syn number> and <syn person>. So now we can express Word4 as:

Word4:

<> == Sew

<syn tense> == present

<syn number> == sing

<syn person> == third.

This approach has the advantage that the attribute ordering used in the <mor...> paths

is handled internally: the leaf nodes need not know or care about it

23

.

4.2 Boolean logic

We can, if we wish, use parameters in evaluable paths that resolve to true or false. We

can then de�ne standard truth tables over DATR paths:

Boolean:

<> == false

<or> == true

<if> == true

<not false> == true

<and true true> == true

<if true false> == false

<or false false> == false.

This node de�nes the standard truth tables for all the familiar operators and connectives

of the propositional calculus expressed in Polish rather than in�x order

24

. Notice, in

particular, how the DATR default
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that is not so. Consider a hypothetical language in which personal proper names have one

of two genders, masculine or feminine. Instead of the gender being wholly determined

by the sex of the referent, the gender is determined partly by sex and partly by the

phonology. Examples of this general type are quite common in the world's languages

25

.

In our hypothetical example, the proper name will have feminine gender either if it ends

in a consonant and denotes a female or if it ends in a stop consonant but does not denote

a female. We can encode this situation in DATR as follows

26

:

Personal_name:

<> == Boolean

<ends_in_consonant> == "<ends_in_stop>"

<gender_is_feminine> ==

<or <and "<female_referent>" "<ends_in_consonant>">

<and <not "<female_referent>"> "<ends_in_stop>">>.

We can then list some example lexical entries for personal proper names

27

:

Taruz:

<> == Personal_name

<female_referent> == true

<ends_in_consonant> == true.

Turat:

<> == Personal_name

<female_referent> == true

<ends_in_stop> == true.

Tarud:

<> == Personal_name

<ends_in_stop> == true.

Turas:

<> == Personal_name

<ends_in_consonant> == true.

Note that both Turas and Tarud turn out not to denote females, given the general false

default in Boolean

28

. The genders of all four names can now be obtained as theorems:

Taruz: <gender_is_feminine> = true.

Turat: <gender_is_feminine> = true.

Tarud: <gender_is_feminine> = true.

Turas: <gender_is_feminine> = false.

25 For example, Fraser & Corbett (1995) use DATR to capture a range of

phonology/morphology/semantics interdependencies in Russian. And Brown & Hippisley (1994) do

the same for a Russian segmental phonology/prosody/morphology interdependency. But one can

�nd such interdependencies in English also: see Ostler & Atkins (1992: 96-98).

26 Note that complex expressions require path embedding. Thus, for example, the well-formed

negation of a conditional is <not <if .. ..>> rather than <not rather than<94_4 T108252
(Turat:)T0hannot
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<l o v e> = l o v e

<l o v e + s> = l o v e s

<l o v e + e d> = l o v e d

<l o v e + e r> = l o v e r

<l o v e + l y> = l o v e l y

<l o v e + i n g> = l o v i n g

<l o v e + a b l e> = l o v a b l e.

4.4 Representing lists

DATR's foundation in path/value speci�cations means that many of the representational

idioms of uni�cation formalisms transfer fairly directly. A good example is the use of

first and rest attributes to represent list-structured features, such as syntactic ar-

guments and subcategorised complements. The following de�nitions could be used to

extend our verb fragment by introducing the path <syn args>, which determines a list

of syntactic argument speci�cations.

NIL:

<> == nil

<rest> == UNDEF

<first> == UNDEF.

VERB:

<syn cat> == verb

<syn args first syn cat> == np

<syn args first syn case> == nominative

<syn args rest> == NIL:<>.

Here extensions of <syn args first> specify properties of the �rst syntactic argument,

while extensions of <syn args rest> specify the others (as a �rst/rest list). UNDEF is

the name of a node that is not de�ned in the fragment, thus ensuring that <syn args

rest first>, <syn args rest rest>, and so forth are all unde�ned. The fragment

above provides a default speci�cation for <syn args> for verbs consisting of just one

argument, the subject NP. Subclasses of verb may, of course, override any part of this

default; for instance, transitive verbs add a second syntactic argument for their direct

object:

TR_VERB:

<> == VERB

<syn args rest first syn cat> == np

<syn args rest first syn case> == accusative

<syn args rest rest> == NIL:<>.

The description can be improved by using a separate node, NP ARG, to represent the

(default) properties of noun-phrase arguments:

NP_ARG:

<first syn cat> == np

<first syn case> == accusative

<rest> == NIL:<>.

VERB:

<syn cat> == v

<syn args> == NP_ARG:<>

<syn args first syn case> == nominative.

TR_VERB:

<> == VERB

<syn args rest> == NP_ARG:<>.

24
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TR VERB accepts the NP ARG default unconditionally for the direct object argument, but

VERB overrides the default case for its subject argument. The e�ect of the empty path

(<>) speci�cation in the NP ARG inheritances is to \strip o�" the leading subpath from

the path whose value is inherited. The default mechanism adds the same path extension

to both sides, giving rise to statements such as the following:

VERB:<syn args first syn cat> == NP_ARG:<first syn cat>.

TR_VERB:<syn args rest first syn cat> == NP_ARG:<first syn cat>.

TR_VERB:<syn args rest first syn case> == NP_ARG:<first syn case>.

Three element argument lists, such as that needed for ditransitive verbs, are constructed

in the obvious way (where PP ARG is assumed to be like NP ARG but for prepositional-

phrase complements):

DI_VERB:

<> == TR_VERB

<syn args rest rest> == PP_ARG:<>.

4.5 Lexical rules

A lexical representation language needs to be able to express the relations that are now

widely thought to be in the domain of lexical rules

32

. Canonically, such rules deal with the

phenomena that used to be described by the \cyclic rules" of late 1960s transformational

grammar. Characteristically, they pertain to rather speci�c classes of lexical items (e.g.,

transitive verbs, or tensed auxiliary verbs) and they are subject to exceptions of various

kinds

33

. It is these characteristics that have led many linguists to consign them to the

lexicon. They usually involve a di�erence in argument structure and this is sometimes

accompanied by a morphological di�erence. The combination of evaluable paths with a

standard encoding of argument lists make it rather easy to de�ne lexical rules in DATR

34

.

Here, by way of illustration, is a partial analysis of verbs that implements a lexical

rule for syntax of the (agentless) passive construction

35

:
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path. Instead, DATR allows their relatedness of meaning to be captured by using the

de�nition of one in the de�nition of another.

A very few words in English have alternative morphological forms for the same

syntactic speci�cation. An example noted by Fraser & Hudson (1990, 62) is the plural

of hoof which, for many English speakers, can appear as both hoofs and hooves

39

. DATR

does not permit a theorem set such as the following to be derived from a consistent

description:

Word7:

<syn number> = plural

<mor form> = hoof s

<mor form> = hoove s.

But it is quite straightforward to de�ne a description that will lead to the following

theorem set:

Word7:

<syn number> = plural

<mor form> = hoof s

<mor form alternant> = hoove s.

Or something like this:

Word7:

<syn number> = plural

<mor forms> = hoof s | hoove s .

Or this:

Word7:

<syn number> = plural

<mor forms> = { hoof s , hoove s }.

Of course, as far as DATR is concerned f hoof s , hoove s g is just a sequence of

seven atoms. It is up to some component external to DATR which makes use of such

complex values to interpret it as a two member set of alternative forms. Likewise, if we

have some good reason for wanting to put together the various senses of cherry into a

value returned by a single path, then we can write something like this:

Cherry:

...

<sem glosses> == { <sem gloss 1> , <sem gloss 2> , <sem gloss 3> }.

which will then provide this theorem:

Cherry:

<sem glosses> = { sweet red berry with pip ,

tree bearing sweet red berry with pip ,

wood from tree bearing sweet red berry with pip }.

Also relevant here are the various techniques for reducing lexical disjunction discussed

in Pulman (forthcoming).

4.7 Encoding DAGs

As a feature-based formalism with a syntax modelled on PATR, it would be reasonable to

expect that DATR can be used to describe directed acyclic graphs (DAGs) in a PATR-like

fashion. Consider an example such as the following:

DAG1:

<vp agr> == <v agr>

39 See also the dreamt/dreamed verb class discussed by Russell et al. (1992, 330-331).
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<v agr per> == 3

<vp agr gen> == masc.

This looks like simple reentrancy from which we would expect to be able to infer:

DAG1:

<vp agr per> = 3.

And, indeed, this turns out to be valid. But matters are not as simple as the example

makes them appear: if DAG1 was really the DAG it purports to be, then we would also

expect to be able to infer:

DAG1:

<v agr gen> = masc.

But this is not valid, in fact <v agr gen> is unde�ned. It might be tempting to conclude

from this that the equality operator in DATR is very di�erent from the corresponding op-

erator in PATR, but this would be to misunderstand what has happened in this example.

In fact, the semantics of the statement

DAG1:

<vp agr> == <v agr>.

taken in isolation is very similar to the semantics of the corresponding PATR statement:

both assert equality of values associated with the two paths. The DATR statement is

slightly weaker in that it allows the left-hand-side to be de�ned when the right-hand-side

is unde�ned. But, even in DATR, if both sides are de�ned they must be the same, so,

in principle, the value of the left-hand-side does semantically constrain the value of the

right-hand-side. However, in a DATR description, specifying explicit values for extensions

of the left-hand-side of such an equality constraint overrides its e�ect, and thus does

not inuence the values on its right-hand-side.

Another di�erence lies in the fact that DATR subpaths and superpaths can have

values of their own:

DAG2:

<v agr> == sing

<v agr per> == 3.

From this little description we can derive the following statements, inter alia:

DAG2:

<v agr> = sing

<v agr num> = sing

<v agr per> = 3

<v agr per num> = 3.

From the perspective of a standard untyped DAG-encoding language like PATR, this is

strange. In PATR, if <v agr per> has value 3, then neither <v agr> nor <v agr per

num> can have (atomic) values.

As these examples clearly show, DATR descriptions do not map trivially into (sets

of) standard DAGs (although neither are they entirely dissimilar). But that does not

mean that DATR descriptions cannot describe standard DAGs. Indeed, there are a

variety of ways in which this can be done. An especially simple approach is possible

when the DAGs one is interested are all built out of a set of paths whose identity is

known in advance (Kilbury et al. 1991). In this case, we can use DATR paths as DAG

paths, more or less directly:

PRONOUN2:

<referent> == '<' 'NP' referent '>'.

She2:

<> == PRONOUN2

<case> == nominative
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<person> == third

<number> == singular.

From this description, we can derive the following theorems:

She2:

<case> = nominative

<person> = third

<number> = singular

<referent> = <
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with that inherited from another. Because of this, the handling of multiple inheritance

is an issue which is central to the design of any formalism for representing inheritance

networks.
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with bit-vectors for speed and compactness. At the other extreme, Duda & Gebhardi

(1994) present an interface between a PATR-based parser and a DATR
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map strings of atomic phonemes to strings of atomic phones. But it also allows one to

encode full-blown feature and syllable-tree based prosodic analyses.

Unlike the formalisms typically proposed by linguists, DATR does not attempt to

embody in its design any substantive and restrictive universal claims about the lexicons

of natural language. That does not distinguish it from most NLP formalisms, of course.

However, we have also sought to ensure that its design does not embody features that
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APPENDIX: The critical literature on DATR reviewed

Since DATR has been in the public domain for the last half dozen years and been widely
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Finally, Domenig & ten Hacken contend that lexical inheritance formalisms (and

thus DATR) are unusable for the purpose for which they were designed because the



DATR cogs csrp 382, November 1995

ever, we agree with their earlier comment \that orthogonal multiple default inheritance is

at this stage the best solution for conicts" (p61) and can see no computational linguistic

motivation for equipping DATR with a further primitive inheritance mechanism

53

.

Their fourth objection consists of the claim that \it is not possible in DATR to have

complex structured objects as values" (p64). In one sense this is true since DATR values

are simply sequences of atoms. But although true, it does not provide support for a

sound objection. DATR can construct those sequences of atoms on the basis of a com-

plex recursive description, and the atom sequences themselves can represent complex

recursive objects so far as NLP system components outside the lexicon are concerned.

The sequences of atoms that DATR provides as values simply constitute an interface for

the lexicon that is entirely neutral with respect to the representational requirements of

external components. For what is intended to be a general purpose lexical knowledge

representation language, not tied to any particular conceptions of linguistic structure or

NLP formalism, this neutrality seems to us to be a feature, not a bug.

In a �fth objection, they note correctly that the semantics of paths in DATR and

PATR is di�erent but then go on to claim that DATR paths \could be better described

as atomic attributes" that
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introduction of defaults is meant to eliminate

56

.

At the root of Krieger & Nerbonne's (1993) critique of DATR is a complaint that

it fails to provide
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the fact that an atom may mean one thing in the semantics of DATR and something quite

di�erent in the semantics of a feature formalism will lead to \massive redundancy" (p47)

in lexical speci�cations (the phrase gets repeated in Bouma & Nerbonne 1994). Again,

no argument in support of this conclusion is o�ered. And we cannot see how semantic

overloading of atoms gives rise, of itself, to any kind of redundancy

58

. Indeed, those

who design programming languages normally introduce semantic overloading in order to

achieve economy of expression.

Finally, Bouma & Nerbonne (1994) comment that \in spite of Kilgarri�'s (1993) in-

teresting work on modelling some derivational relations in the pure inheritance machinery

of DATR, we know of no work attempting to model potentially recursive derivational re-

lations, and we remain sceptical about relying on inheritance alone for this". We are not

sure what they mean by \the pure inheritance machinery of DATR" or why they think

that someone attempting an analysis of recursive derivation in DATR would want to do

so using \pure inheritance" alone. Here is a trivial (and linguistically rather pointless)

DATR analysis of the more complex of their two examples:

Word:

<v> == "<>"

<a from n> == <n> + al

<v from a> == <a> + ize

<n from v> == <v> + tion.

Institute:

<> == Word

<root> == institute.

From this description we can derive theorems like these:

Institute:

<root> = institute

<n from v root> = institute + tion

<a from n from v root> =

institute + tion + al

<v from a from n from v root> =

institute + tion + al + ize

<n from v from a from n from v root> =

institute + tion + al + ize + tion.

Note the recursive reintroduction of the tion


