


This paper launches an all-out assault on this interfacing problem. It introduces a novel learning

method (`explicitation') and shows how its unsupervised, constructive nature allows it to be used to

link learning with both evolutionary
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Figure 2: Basic agent scenarios.

previous sensor input). In each time cycle of the simulation, the sensor produces a real value between

0 and 1 which varies monotonically with the proximity of the nearest obstacle along a ray pointing

directly ahead, see Figure 2 (b). The border of the arena does not constitute an obstacle and thus

never a�ects the sensed proximity value. However, it may reect the proximity of the other agent if the

position of that agent falls somewhere along the sensor ray, see Figure 2 (c). If no obstacle intersects

the sensor ray, the sensor returns a zero value. The larger of the two agents, known as the predator,

has a variety of sensors. However, since the model is concerned with the development of behaviour in

the prey, these are not relevant and will not be discussed.

Within the simulation, the predator's goal is to to destroy the prey as quickly as possible. The prey's

goal is to survive while, at the same time, minimising movement. The predator attempts to achieve

its goal by implementing a `search-and-destroy' strategy. If it �nds itself facing away from the prey, it

turns towards it; see Figure 3 (a) and (b).
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itself (cf. Bolles, 1979; Flaherty, 1985). Where the issue of the development of behavioural responses

is confronted explicitly (cf. Barnett, 1973), there are few operational models and none as yet that deal

explicitly with �ght-or-ight.

Generic work on the evolution of intelligent behaviour has typically focussed on the genetic algorithm

model of Holland (Holland, 1975; Goldberg, 1989) and the classi�er system of Wilson (1991). Work on

behaviour learning has concentrated on algorithmic models such as recursive decision-tree generation

(Quinlan, 1986) or neural-network models such as backpropagation (Rumelhart, Hinton and Williams,

1986) or competitive learning (Rumelhart and Zipser, 1986). However, there has been no previous

attempt to produce a computational model which shows the role played by evolutionary, learning and

representation-construction processes in the development of this behaviour.

4 Evaluating standard learners

Can the development of the �ght-or-ight behaviour in agents be modelled solely in terms of lifetime

learning? To investigate this various learning methods were tested for their ability to acquire the �ght-

or-ight response. Experiments were conducted using C4.5

1

and standard backpropagation. Both of

these are supervised methods and thus require explicit training examples. In the experiments carried

out a training set of 1000 input/output pairs was used and these were derived direct from a running

simulation.

The input in each pair was a vector of numbers corresponding to the prey's current sensory input and its

corresponding input in the previous cycle. (The second input constitutes the learner's `memory' of the

�rst.) The output in each case speci�ed the wheel motions for an appropriate execution of the �ght-or-

ight behaviour. Thus, in those cases where the input vector was derived in the context of an oncoming,

accelerating predator, the target outputs speci�ed the wheel motions for a ight response. In the testing

of backpropagation standard parameters for learning rate and momentum (0.01 for learning rate and

0.9 for momentum) were used in an ordinary feed-forward architecture of three, fully interconnected

layers. Architectures involving from 3 to 30 hidden units in the middle layer were tested, but it was

found that the number of hidden units made little di�erence to the �nal performance.

The two methods were both tested for their ability to generalise. The quality of generalisation with

respect to unseen cases was examined, as was the degree to which the learning methods were able to

reproduce the �ght-or-ight response in a replication of the original simulation. In both cases, both

methods performed poorly. The average results obtained are summarised in Table 1. The error shown

here is RMS error on a testing set of 1000 cases. The `Deaths' column shows the number of deaths

sustained by a trained agent in a simulation of 2000 time steps, in which the predator agent produced

12 aggressive (accelerating) approaches.

Error Deaths

C4.5 0.209 12

Backpropagation 0.670 8

Table 1: Performance of C4.5 and backpropagation on �ght-or-ight.

1

C4.5 is an improved version of the well-known ID3 algorithm (Quinlan, 1986).
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Figure 5:Flight resp onse.
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g
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Here X is the entire datum and v

g

is the value of a function g, which evaluates the implicit property.

Methods which attempt to discover and exploit such probabilities for inductive purposes, without using

any other source of information, are `empirical learning' algorithms. There are a large number of

these (Shavlik and Dietterich, 1990, Michalski, Carbonell and Mitchell, 1983, Michalski, Carbonell and

Mitchell, 1986). However, the Bayesian analysis enables us to divide them up into two basic types.

A method that attempts to exploit either of the �rst two forms of probability confronts a relatively

easy task. Only cases that are explicitly observed in the data need to be taken into account. There

are a �nite number of these. The task thus involves deriving frequency statistics (probabilities) over a

�nite dataset.

A method that attempts to exploit probabilities of the third form confronts a much harder task. It has

to �rst identify the appropriate evaluation function for the implicit property (i.e., it has to guess what

the property is). There are an in�nite number of possible implicit properties and the task thus involves

dealing with an in�nitely large search space.

Practical learning methods naturally tend to be predisposed towards the easier task, i.e., they tend to

exploit probabilities of the �rst and second form. A typical example is the Focussing method (Bundy,

Silver and Plummer, 1985). Some methods such as ID3 (Quinlan, 1986) do not consider the third

form at all. On the other hand, there are also methods which focus exclusively on the third form.

Examples include the `BACON-esque' methods of Langley and co-workers (Langley, 1977; Langley,

1978; Langley, Bradshaw and Simon, 1983; Langley, Simon, Bradshaw and Zytkow, 1987) and related

methods such as (Wol�, 1978; Wol�, 1980; Lenat, 1982; Wnek and Michalski, 1992). Some methods

such as backpropagation (Hinton, 1989) appear to straddle the fence, showing some ability to exploit

both main forms (Thornton, 1994b).

Interestingly, we can deduce that the evaluation function used in the third form must measure a

relational property of its inputs. To understand why, we need to think about the way in which the

function di�erentiates di�erent types of input. Let us say that the function produces a particular value

whenever the input variables have certain absolute values. In this case, this evaluation is e�ectively a

label for an explicit case. If all the values of the function are derived this way, the conditional probability

can obviously be reduced to a set of probabilities of the second form. Thus, if the probability is a

valid example of the third form, the evaluation function must measure a non-absolute (i.e., relational)

property of its inputs. Learning problems whose solutions involve exploiting probabilities of the third

form are thus relational. Problems which involve exploitation of probabilities for explicit cases are

statistical, since they simply involve the derivation of frequency statistics over a �nite dataset.

2

Of course, since the space of relational e�ects is in�nitely large, relational learners always and necessarily

have a bias (Utgo�, 1986), i.e., they have a predisposition to consider certain types of relationship.

Relational learners are also always potentially recursive. The identi�cation of any set of relational

e�ects involves the application of evaluations (functions) to the original data. This creates new values,

and thus new data. These new data can themselves be processed for statistical and relational e�ects

in a recursive manner.

At each stage, this process is e�ectively building a new level of description of the original data. Each

level encodes or expresses a relational e�ect in the form of a single variable using an evaluation (a test

2

Learning methods can be classi�ed the same way.



or measure) of the underlying relationship. Ths structure that will be built in a given case depends

not only on the original data source but also on the bias of the method. Moreover, the inuence of the

bias `accumulates' and becomes increasingly strong as the process builds layer upon layer.

I call any which exploits relational and statistical e�ects in this recursive manner an explicitation

process, on the grounds that it incrementally renders implicit properties of the data explicit, through

a process of recursive redescription.

6.1 A hybrid implementation

The explicitation process can be implemented in many di�erent ways. However, for present purposes a

`hybrid' implementation (Torrance and Thornton, 1991) was used. This incorporates a neural-network

component and an algorithmic or `symbolic' component. The neural network component has the task of

exploiting statistical e�ects and the algorithmic component has the task of implementing the recursive

exploitation of relational e�ects. The latter uses a bias which e�ectively restricts its attention to

relationships involving constant di�erences. A set of data were considered to exhibit a relational e�ect

(i.e., to belong to a relationship) just in case they could be arranged into a linear order such that each

variable would show a constant di�erence from datum to datum. Data satisfying this constraint were

said to exhibit a linear signature. (As an e�ciency measure, the relational exploitation was directed

towards the statistical e�ects identi�ed at any given layer, rather than to the relevant original data.

Thus the learning always adopted a coarse-grained view of available data.)

The foundation for the neural network (statistical) component was the well-known unsupervised pro-

cedure of competitive learning (Rumelhart and Zipser, 1986). This is a general and robust method.

However, like many unsupervised processes, it has a blind-spot in that it is unable to directly exploit

low-order

3

statistical e�ects.

4

The basic procedure of an unsupervised learning method involves group-

ing inputs together according to similarity. This process `discovers' cases in which a set of input values

typically co-occur and thus tends to expose nth-order associations between variable values (where n is

the number of values making up a complete input). However, the process ignores possible associations

of order less than n, i.e., ones which do not involve the complete set of input variables taken together.

Unsupervised methods can usually be adapted to overcome this de�ciency. In the case of competitive
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Figure 6: Explicitation using neural-network construction.

� The identi�cation of a linear signatures at any layer always leads to the production of a new node

at the next level of the network. The action of the network is con�gured so as to instantiate

such variables with a value reecting the geometric projection of the current input upon the line

carved out by the relevant signature. Such variables thus provided an approximate measure of

the relevant relationship.

� The learning is fully incremental. Nodes and layers are added to the network up until the point

at which all e�ects | statistical and relational | are fully exploited.

� The learner's one-cycle memory is implemented by providing each main variable with a bu�er

which always hold its previous value.

7 The model

We now turn attention to the model itself. This takes the form of a simulation program written in the

language POP-11 (Barrett, Ramsay and Sloman, 1985). The program takes about 10 minutes to run

12



on a single-user Sun SPARC 1+. As we will see, the phenomena it generates while doing so include

simulations of evolutionary processes, learning processes and interactions between predator and prey

agents.

The simulation divides up into a number of phases. In the initial phase, the world contains a single prey

agent and a single predator agent. The predator agent exhibits the `non-aggressive' behaviour pattern

described above. If it �nds itself facing away from the prey, it simply attempts to turn towards it; see

Figure 3 (a) and (b).



are excitatory connections from the sensor to both wheel motors. With these biases and sensor-motor

connections, the agent will tend to move towards whatever excites its sensor, tending to veer to the left

at all times (Braitenberg, 1984).



7.1 Events in the initial learning phase

As we have seen, the prey has a single sensor which senses the proximity of the nearest obstacle (e.g.,

the predator) along a ray pointing directly ahead. Predator attacks, in the initial phase of the model,

take the form of rapid advances towards the prey, which are then aborted if the prey turns out to be

facing towards the oncoming predator. Thus the prey's input environment is a sequence of proximity

values, a sample of which is as follows.

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59

0.59 0.59 0.59 0.59 0.60 0.60 0.61 0.62 0.63 0.64 0.66 0.67 0.68

0.69 0.70 0.71 0.72 0.73 0.74 0.76 0.77 0.78 0.79 0.80 0.81 0.82

0.84 0.85 0.86 0.87 0.88 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note the prevalence of zero (0.00) values, the runs of increasing values (signifying an oncoming predator)

and the runs of identical values (signifying a predator moving into a head-on position).

Learning takes place in the prey using the hybrid explicitation method. As mentioned, all data variables

in the learning process are bu�ered, which means that the learning actually has access to a data stream

based on two variables: the sensor value itself and the previous sensor value. The statistical-exploitation











at a particular proximity; the label used is thus approach@c. (Note that all nodes at this level respond

to events extending across time t and t-1 and thus have no time subscript.)

The variables making up the third level of the network are derived from the signatures detected in

the e�ects captured by the second-level nodes. They thus measure the proximity of an approach oc-

curring at a particular rate (i.e., either fast or slow). The labels applied are thus fast-approacher@t,

slow-approacher@t etc. The nodes at the fourth layer of the network respond to approaches which

maintain a constant or a changing description over the third-layer variables, i.e., which either stay slow

or fast, or change from one rate to the other. I therefore use the labels



9 Final comments

The paper has presented a model of the development of a �ght-or-ight behaviour in a simulated agent.

Because the model makes use of the explicitation learning method, which is both unsupervised and

constructive, it is able to present a developmental picture in which evolutionary processes e�ectively

co-operate with learning processes in the formation of representational structure. Because the model

uses processes which are fully incremental, it is able to show how an agent/environment interaction can

modulate and guide an underlying evolutionary process. And because the learning is implemented in

the form of a neural-network process, the learning process is at least reconcilable with current models

of brain mechanism.

The model thus provides a `big-picture' story about the way in which the development of complex

intelligent behaviours might involve evolutionary processes, learning processes, agent/environment in-

teraction and representation development. The learning method forms a a bridge between the GA

paradigm on the one hand and the representationalist paradigm on the other.

Unfortunately, in its present manifestation the model has many shortcomings. As a computational

implementation, it is not as robust as one would like. It also incorporates as ad hoc features the device

of one-cycle memory (i.e., data bu�ering). The selection of a linear-signature bias during relational

learning is also weakly motivated. But the most serious de�ciency is probably the fact that the model

makes use of what is in e�ect, a pre-scripted sequence of events. It requires that the predator implement

certain changes in behaviour at certain points in the process. If these behavioural alterations do not

take place on cue, the learning process is derailed.

However, it is believed that all these de�ciencies will be remedied in the ongoing development of this

work. Future versions of this model will aim to show how a �ght-or-ight response emerges in a more

natural, unscripted scenario, involving multiple predator and prey agents in addition to other forms of

process and contingency. Work is currently in progress towards this end.
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