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Abstract. This paper describes experiments in which neural network control architectures were

evolved in minimal simulation for an octopod robot. The robot is around 30cm long and has

4 infra red sensors that point ahead and to the side, various bumpers and whiskers, and ten

ambient light sensors positioned strategically around the body. Each of the robot's eight legs is

controlled by two servo motors, one for movement in the horizontal plane, and one for movement

in the vertical plane, which means that the robots motors have a total of sixteen degrees of

freedom. The aim of the experiments was to evolve neural network control architectures that

would allow the robot to wander around its environment avoiding objects using its infra-red

sensors and backing away from objects that it hits with its bumpers. This is a hard behaviour to

evolve when one considers that in order to achieve any sort of coherent movement the controller

has to control not just one or two motors in a coordinated fashion but sixteen. Moreover it is

an extremely di�cult set-up to simulate using traditional techniques since the physical outcome

of sixteen motor movements is rarely predictable in all but the simplest cases. The evolution of

this behaviour in a minimal simulation, with perfect transference to reality, therefore, provides

essential evidence that complex motor behaviours can be evolved in simulations built according

to the theory and methodology of minimal simulations.

1 Introduction

Evolutionary Robotics is not magic and as several authors have pointed out [2, 6, 12, 14], there are

many big questions that need answers if Evolutionary Robotics is to progress beyond the proof of

concept stage. One of the most urgent of these (in that if it is not answered, Evolutionary Robotics is



simulation. Space limitations do not allow a full explication of the theory and methodology of minimal

simulations. However, the next section gives a broad brush sketch of the main ideas, which, together

with the details of the minimal simulation used for the experiments reported in this paper, should give

the reader a good idea of how to build and use a minimal simulation.

Fig. 1. The Octopod robot.

This paper describes experiments in which neural network control architectures were evolved for an

octopod robot. The robot, shown in �gure 1 is around 30cm long and has 4 infra red sensors that

point ahead and to the side, various bumpers and whiskers, and ten ambient light sensors positioned

strategically around the body. Each of the robot's eight legs is controlled by two servo motors, one for

movement in the horizontal plane, and one for movement in the vertical plane, which means that the

robots motors have a total of sixteen degrees of freedom.

The aim of the experiments was to evolve neural network control architectures that would allow the

robot to wander around its environment avoiding objects using its infra-red sensors and backing away

from objects that it hits with its bumpers. This is a hard behaviour to evolve when one considers

that in order to achieve any sort of coherent movement the controller has to control not just one

or two motors in a coordinated fashion but sixteen. Moreover it is an extremely di�cult set-up to

simulate using traditional techniques since the physical outcome of sixteen motor movements is rarely

predictable in all but the simplest cases. The evolution of this behaviour in a minimal simulation,

therefore, provides essential evidence that complex motor behaviours can be evolved in simulations

built according to the theory and methodology put forward in [9, 8, 7]. See [3, 4, 11] for related work

on evolving locomotion controllers for walking robots and for abstract computer models of insects.

The minimal simulation used to evolve controllers for the octopod is described in Section 3. The rest of

the evolutionary machinery, including the neural networks, the encoding scheme, the genetic algorithm

and genetic operators is described in section 4. Experimental results are put forward in section 5 and

�nally, in section 6, some comments are o�ered on the paper as a whole. But �rst, a brief description

of the idea of minimal simulations.







around its environment in an acceptable manner, its legs do not clash and its belly does not drag along

the ground and its legs do not pull in di�erent directions. The minimal simulation described below

takes full advantage of this fact. The dynamics of the simulated robot match the dynamics of the



how the body as a whole moves in response. These include the way in which controller output a�ects

how the legs move, and the way in which the movement of the legs a�ects the movement of the body

as a whole.

Build a model of the way in which the members of the base set interact with each other

and react to controller output (when the robot is performing the behaviour).

The overall movement of the robot was described by two variables: one for the speed of the left-hand

side of the robot and one for the speed of the right-hand side of the robot. Thus if both sides of the

robot moved straight ahead at the same speed then the overall movement of the robot was deemed

to be straight ahead, if they moved in di�erent directions but with equal velocity then the robot was

deemed to be turning on the spot, and if both sides moved backwards at the same speed then the

overall movement of the robot was deemed to be straight backwards.

To model the way in which the robot as a whole moved in response to controller output, therefore,

necessitated a model of the way in which each leg responded to controller output, and the way in which

the movement of each leg contributed to the overall movement of each side of the robot. However,

because of the arguments put forwards in [9], it was not necessary to accurately model the



2

1

3

4 5

6

8

7

RIGHT SPEEDLEFT SPEED

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Fig. 2.





Activation proportional to





16

IR sensor Front bumper Default walk (always on)

Fig. 5. This diagram shows how each connection between leg-controller neurons contains a synapse `gate' that

can be turned on or o� by sensor neurons and the bias neuron. For the sake of diagrammatic simplicity only

one connection is shown, whereas in reality every connection in every leg controller sub-network (36� 8 = 288





real number in the range 0 to 99, and this was mapped onto the relevant range during decoding. The

parameters that were encoded and the ranges onto which they were mapped are as follows:

{ 36 connection weights for the leg-controller sub-networks mapped onto the range �16.

{ 12 cross-body and along-body coupling connection weights mapped onto the range �16.

{ 36 infra-red sensor neuron to synapse connection weights mapped onto the range �6:5 to 25:5.

{ 36 bumper sensor neuron to synapse connection weights mapped onto the range �6:5 to 25:5.

{ 36 bias neuron to synapse connection weights mapped onto the range �6:5 to 25:5.

{ 9 unit threshold constants mapped onto the range �4: 6 for the leg-controller sub-network neurons,

1 for the infra-red sensor neurons, 1 for the bumper sensor neuron and 1 for the bias neuron.

{ 9 unit time constants mapped onto the range 0:5 to 5:0: 6 for the leg-controller sub-network neurons,

1 for the infra-red sensor neurons, 1 for the bumper sensor neuron and 1 for the bias neuron.

{ 3 input connection weights mapped onto the range �16: 1 for the infra-red sensor neurons, 1 for

the bumper sensor neuron and one for the bias neuron.

which makes a total of 177 parameters. Thus genotypes were strings of 177 numbers in the range 0 to

99.

Genetic algorithm and genetic operators

The genetic algorithm was an extremely simple generational model with tournament selection and

elitism. After evaluating every member of the population, o�spring genotypes were repeatedly produced

until the next generation was full. To make a new o�spring, two pairs of individuals were picked

at random from the population and the �ttest individuals from each pair (i.e. the winners of the

tournaments) were chosen to act as parents. The o�spring genotype was then formed from these

two parents through a process of crossover and mutation: single point crossover was applied with a

probability of 1, and every one of the 177 numbers that made up the o�spring had a 0.02 chance of



this type and data of the required type is not available. The other form such a demonstration could

take, and probably the most natural, is the evidence provided by video footage of the robot wandering

around its environment. This cannot, however, be pro�tably presented as part of a text and pictures

document; even if a sequence of stills taken at short and regular time intervals were displayed, this

would not be all that informative as to how the legs of the robot moved in the real world unless there

were an impractically large number of them.

In lieu of any method of demonstrating how the legs of the real robot moved as it wandered around

its environment, the best we can do is to provide a demonstration of how the motor signal patterns to

these legs change in response to each of the four sensory scenarios. Figure 7 o�ers such a demonstration

for a typical reliably �t controller that evolved after 3200 generations. From top to bottom, the �rst

eight traces provide a novel representation of the motor signals issued to each leg over the course of an

average �tness trial, and the bottom two traces show the resultant velocities of the left and right side

of the simulated robot respectively. The best way of explaining how to read the slightly bizarre looking

motor traces is to describe how they were generated. At each iteration of the simulation, a short line

representing the current motor signal was added to the right hand side of each motor signal trace. As

can be seen from the �gure, these lines were of various thicknesses and were always drawn from the

horizontal centre line of the trace either up and to the left or down and to the left with various di�erent

gradients. The thickness of each line represented the vertical angle of the leg relative to the ground

as speci�ed by the motor signal in question: the thicker the line, the lower the leg, and the thinner

the line the higher the leg. The gradient of the line represented the horizontal angle of the leg relative

to the body as speci�ed by the motor signal in question: the further up and to the left, the further

forwards relative to the body, and the further down and to the left, the further backwards relative to

the body. In this way, although they are perhaps harder to read than other less informative types of

trace devised to convey similar information (see [1] for example), each
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Fig. 7. Each leg controller consisted of six fully connected neurons. The activity of neuron 1 and neuron 2

controlled the horizontal and vertical leg angles respectively.

6 Comments

The minimal simulation used in this paper makes full use of the arguments put forward in [9] to evolve

controllers for the octopod robot. Simply put, these arguments state that a minimal simulation need

only model the real-world dynamics involved in successful behaviour and no others. This is because

the only controllers that must cross the reality gap, if the simulation is to be a success, are precisely

those that use these dynamics (i.e. perform the behaviour) and no others. For many robotics setups

and behaviours this may not be of any use since the dynamics involved in successful behaviour may be

neither obvious ahead of time nor qualitatively di�erent to the rest of the dynamics of the system. For

the experiments reported in this article, however, the dynamics of the octopod robot during successful

walking and obstacle avoiding behaviour were both relatively easy to identify and much easier to model

than the dynamics of the octopod robot as a whole. A minimal simulation that modelled these dynamics

alone was therefore easy to construct and ran extremely fast when compared to the simulation that

would result from attempting to model all of the dynamics of the octopod robot within its environment.
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