


tends to increase. According to the Darwinian theory, this process of nat-
ural selection is responsible for the development of all life forms on earth.
Researchers hope to harness its power for computational purposes by imple-
menting simulations of the process. In such simulations, the individuals are
candidate solutions to some problem and fitness is a measure of solution qual-
ity. The aim 1s thus to ‘evolve’ high-quality solutions through simulated natural
selection.

A common way of pursuing this approach involves use of the crossover-
based genetic algorithm or C-GA [Goldberg, 1989]. In this approach, can-
didate solutions are represented as strings of characters or genotypes. Repro-
duction involves the production of a new individual through the splicing together
of genotypes from two ‘parents’. In the usual approach, parent genotypes are
split at a certain point, forming a left part and a right part. The right part from
one parent is then joined to left part from other, and vice versa. This produces
two offspring genotypes which then replace relatively unfit individuals from the
population.

2 Schema analysis

At first sight, the C-GA appears to be a way of randomly exploring the space
of possible genotypes. However, Holland’s schema analysis [Holland, 1975]
provides an alternative picture. In this analysis we assume that the GA is
a way of processing genotype features rather then genotypes themselves — a
feature being simply a set of values in specific positions. A particular feature is
defined in terms of a schema. This is a genotype-like string with specific values
in some positions and ‘don’t care’ values (asterisks) in others. An example is

*10%%0k k%%

This schema has ten characters in all, including seven ‘don’t care’ values. It
will match any 10-character genotype with a 1 in the second position, a 0 in the
third position and a 0 in the sixth position. The genotypes which match the
schema are referred to as its instances.

Note that we can construct a schema which will match some specific genotype
by replacing any one of its characters with asterisks. There are thus 2! schemas
matching to any genotype of length [. There are potentially n - 2 schemas for
a population of n genotypes of length [, although in practice there will usually
be fewer due to duplication. (There are always at least 2'.) The defining
length of a schema is the number of positions between its first and last specific
position. Its order is the number of specified bits. Thus the defining length of
‘*10%x0****’ 15 5 and its order is 3.



3 Schema growth under pure reproduction

The schema concept allows us to adopt a new perspective on the GA. Rather
than thinking of it as a simulation of an evolutionary process we can think of it
as carrying out ‘schema processing’. We view every schema as having a fitness
value which is defined as the average fitness of its instances. In Figure 1 we see
five genotypes (column 1) each of which has a certain fitness value (column 2).
The table also shows five example schemata (column 3), each of which has zero
or more instances (column 4) among the listed genotypes. The mean fitness of
each schema (column 5) is just the average of the fitnesses of its instances.

We view the goal of the GA as the multiplication of highly-fit schemas in
the population.?

Genotype | Fitness | Schemata | Instances | Mean fitness
01100 (1) | 103 *KLEROHH 1,2 63.5

01001 (2) | 24 QFFQ** 1,24 83

10000 (3)




4 Schema growth under reproduction with crossover

In an evolutionary process involving pure reproduction (i.e., copying), the pop-
ulation is always made up from copies of members of the original population.
(In fact, if the process continues long enough we expect the population to be



greater than its ‘vulnerability’ — the ratio of its defining length to the genotype
length. How easily 1s this ‘shortness’ requirement satisfied?

If fitness values range between 80 and 120 with the average value being 100,
the maximum fitness ratio is 120/100 and the maximum fitness advantage is



fitness. Where GAs are used to evolve genotypes which encode for systems or
mechanisms, the low-epistasis assumption will thus typically be violated.

The scenario in which fitness is affected by ‘epistatic interactions’ between
parts of the genotype has, of course, been intensively investigated by the GA
community. In fact, the construction of the so-called ‘GA-deceptive’ problem
is typically a matter of deliberately nurturing epistasis (‘nonlinearity’) in an
encoding [cf. Goldberg, 1989, ch. 2]. However, the observation that the schema
theorem effectively assumes low epistasis, may help to explain the problems
that some researchers have encountered in the use of C-GAs in genetic pro-
gramming [Koza, 1992], cf. [Lang, 1995] and [O’Reilly, Forthcoming]. In this
application, high-fitness genotypes are programs for a given task and the geno-
type is thus literally an encoding of a mechanism. Fitness is not independently
attributable to individual parts of the genotype, but only to their interactions.

6 The building block hypothesis

The credibility of the C-GA does not rest solely on the schema theorem. It
also rests on the so-called building-block hypothesis. This states that the
crossover GA works well when short, low-order, highly fit schemas recombine
to form even more highly fit, higher-order schemas. In fact, as Forrest and
Mitchell [1996] note, ‘the ability to produce fitter and fitter partial solutions
by combining blocks is believed to be the primary source of the GA’s search
power.” Unfortunately, when we come to examine the assumptions introduced
by the building-block hypothesis, we find that they contradict those introduced
by the schema theorem.

The building-block hypothesis assumes that the fitness of any one block is
typically affected by the other blocks on the genotype. If this were not the
case 1t would be meaningless to talk about a ‘building-block process’ operating
over and above the usual evolutionary process. Thus the building-block hy-
pothesis implicitly assumes only a positive effect of epistasis on fitness and thus
contradicts the low-epistasis assumption introduced by the schema theorem.’

When we come to consider the length implications of the building-block hy-
pothesis we uncover a further contradiction. During the building-block process,
the schemas that require processing at any given stage are actually the blocks
that have been put together by the prior building-block process. Except at
the initial stage, the defining length of these schemas is related to the defining
lengths of the components of the blocks. Consider a block made up of just two
schemas. One schema may be nested inside the other. In this case the defining
length of the block is simply the defining length of the longer of the two schemas.
At the other extreme the two schemas might be situated at opposite ends of the
genotype. In this case the defining length of the new block will be close to the
genotype length .

If we make the conservative assumption that, on average, the defining lengths






As Forrest and Mitchell [1996] have commented there is a ‘need for a deeper
theory of how low-order building blocks are discovered and combined into higher-
order schemas.’

7  Summary

As Forrest and Mitchell have noted, confidence in the efficacy of the GA is still
largely based on the building-block hypothesis and the schema theorem. The
schema theorem shows that schemas with high fitness are given exponentially
increasing numbers of trials through reproduction but only if we assume that
their fitness contributions are context-free and their defining lengths are suffi-
ciently short. In reality, as we have seen, neither of these assumptions is easily
satisfied.

When we come to consider the assumptions implicitly introduced by the
building-block hypothesis we find that they implicitly contradict the assump-
tions underpinning the schema theorem. Thus, if we assume that the viability of
the GA process is established by the schema theorem but that its ‘power’ is ac-
counted for by the building-block hypothesis, we have to conclude that the GA
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