


tends to increase. According to the Darwinian theory, this process of nat-

ural selection is responsible for the development of all life forms on earth.

Researchers hope to harness its power for computational purposes by imple-

menting simulations of the process. In such simulations, the individuals are

candidate solutions to some problem and �tness is a measure of solution qual-

ity. The aim is thus to `evolve' high-quality solutions through simulated natural

selection.

A common way of pursuing this approach involves use of the crossover-

based genetic algorithm or C-GA [Goldberg, 1989]. In this approach, can-

didate solutions are represented as strings of characters or genotypes. Repro-

duction involves the production of a new individual through the splicing together

of genotypes from two `parents'. In the usual approach, parent genotypes are

split at a certain point, forming a left part and a right part. The right part from

one parent is then joined to left part from other, and vice versa. This produces

two o�spring genotypes which then replace relatively un�t individuals from the

population.

2 Schema analysis

At �rst sight, the C-GA appears to be a way of randomly exploring the space

of possible genotypes. However, Holland's schema analysis [Holland, 1975]

provides an alternative picture. In this analysis we assume that the GA is

a way of processing genotype features rather then genotypes themselves | a

feature being simply a set of values in speci�c positions. A particular feature is

de�ned in terms of a schema. This is a genotype-like string with speci�c values

in some positions and `don't care' values (asterisks) in others. An example is

*10**0****

This schema has ten characters in all, including seven `don't care' values. It

will match any 10-character genotype with a 1 in the second position, a 0 in the

third position and a 0 in the sixth position. The genotypes which match the

schema are referred to as its instances.

Note that we can construct a schema which will match some speci�c genotype

by replacing any one of its characters with asterisks. There are thus 2

l

schemas

matching to any genotype of length l. There are potentially n � 2

l

schemas for

a population of n genotypes of length l, although in practice there will usually

be fewer due to duplication. (There are always at least 2

l

.) The de�ning

length of a schema is the number of positions between its �rst and last speci�c

position. Its order is the number of speci�ed bits. Thus the de�ning length of

`*10**0****' is 5 and its order is 3.
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3 Schema growth under pure reproduction

The schema concept allows us to adopt a new perspective on the GA. Rather

than thinking of it as a simulation of an evolutionary process we can think of it

as carrying out `schema processing'. We view every schema as having a �tness

value which is de�ned as the average �tness of its instances. In Figure 1 we see

�ve genotypes (column 1) each of which has a certain �tness value (column 2).

The table also shows �ve example schemata (column 3), each of which has zero

or more instances (column 4) among the listed genotypes. The mean �tness of

each schema (column 5) is just the average of the �tnesses of its instances.

We view the goal of the GA as the multiplication of highly-�t schemas in

the population.
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Genotype Fitness Schemata Instances Mean �tness

01100 (1) 103 *1*0** 1,2 63.5

01001 (2) 24 0**0** 1,2,4 83

10000 (3)

10000(3)



4 Schema growth under reproduction with crossover

In an evolutionary process involving pure reproduction (i.e., copying), the pop-

ulation is always made up from copies of members of the original population.

(In fact, if the process continues long enough we expect the population to be



greater than its `vulnerability' | the ratio of its de�ning length to the genotype

length. How easily is this `shortness' requirement satis�ed?

If �tness values range between 80 and 120 with the average value being 100,

the maximum �tness ratio is 120/100 and the maximum �tness advantage is



�tness. Where GAs are used to evolve genotypes which encode for systems or

mechanisms, the low-epistasis assumption will thus typically be violated.

The scenario in which �tness is a�ected by `epistatic interactions' between

parts of the genotype has, of course, been intensively investigated by the GA

community. In fact, the construction of the so-called `GA-deceptive' problem

is typically a matter of deliberately nurturing epistasis (`nonlinearity') in an

encoding [cf. Goldberg, 1989, ch. 2]. However, the observation that the schema

theorem e�ectively assumes low epistasis, may help to explain the problems

that some researchers have encountered in the use of C-GAs in genetic pro-

gramming [Koza, 1992], cf. [Lang, 1995] and [O'Reilly, Forthcoming]. In this

application, high-�tness genotypes are programs for a given task and the geno-

type is thus literally an encoding of a mechanism. Fitness is not independently

attributable to individual parts of the genotype, but only to their interactions.

6 The building block hypothesis

The credibility of the C-GA does not rest solely on the schema theorem. It

also rests on the so-called building-block hypothesis. This states that the

crossover GA works well when short, low-order, highly �t schemas recombine

to form even more highly �t, higher-order schemas. In fact, as Forrest and

Mitchell [1996] note, `the ability to produce �tter and �tter partial solutions

by combining blocks is believed to be the primary source of the GA's search

power.' Unfortunately, when we come to examine the assumptions introduced

by the building-block hypothesis, we �nd that they contradict those introduced

by the schema theorem.

The building-block hypothesis assumes that the �tness of any one block is

typically a�ected by the other blocks on the genotype. If this were not the

case it would be meaningless to talk about a `building-block process' operating

over and above the usual evolutionary process. Thus the building-block hy-

pothesis implicitly assumes only a positive e�ect of epistasis on �tness and thus

contradicts the low-epistasis assumption introduced by the schema theorem.'

When we come to consider the length implications of the building-block hy-

pothesis we uncover a further contradiction. During the building-block process,

the schemas that require processing at any given stage are actually the blocks

that have been put together by the prior building-block process. Except at

the initial stage, the de�ning length of these schemas is related to the de�ning

lengths of the components of the blocks. Consider a block made up of just two

schemas. One schema may be nested inside the other. In this case the de�ning

length of the block is simply the de�ning length of the longer of the two schemas.

At the other extreme the two schemas might be situated at opposite ends of the

genotype. In this case the de�ning length of the new block will be close to the

genotype length l.

If we make the conservative assumption that, on average, the de�ning lengths
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As Forrest and Mitchell [1996] have commented there is a `need for a deeper

theory of how low-order building blocks are discovered and combined into higher-

order schemas.'

7 Summary

As Forrest and Mitchell have noted, con�dence in the e�cacy of the GA is still

largely based on the building-block hypothesis and the schema theorem. The

schema theorem shows that schemas with high �tness are given exponentially

increasing numbers of trials through reproduction but only if we assume that

their �tness contributions are context-free and their de�ning lengths are su�-

ciently short. In reality, as we have seen, neither of these assumptions is easily

satis�ed.

When we come to consider the assumptions implicitly introduced by the

building-block hypothesis we �nd that they implicitly contradict the assump-

tions underpinning the schema theorem. Thus, if we assume that the viability of

the GA process is established by the schema theorem but that its `power' is ac-

counted for by the building-block hypothesis, we have to conclude that the GA
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